Answer:
Displacement
General Formulas and Concepts:
<u>Kinematics</u>
- Displacement vs Total Distance
Explanation:
Displacement is the difference between the start position and end position.
Total Distance is the entire distance <em>traveled</em> between the start and end position.
Topic: AP Physics 1 Algebra-Based
Unit: Kinematics
Gravity is all ways pulling down and the normal force acting on top of the object and for it to have to push or pull to the object
Answer:
a) 
b) The second runner will win
c) d = 10.54m
Explanation:
For part (a):

For part (b) we will calculate the amount of time that takes both runners to cross the finish line:


Since it takes less time to the second runner to cross the finish line, we can say the she won the race.
For part (c), we know how much time it takes the second runner to win, so we just need the position of the first runner in that moment:
X1 = V1*t2 = 239.46m Since the finish line was 250m away:
d = 250m - 239.46m = 10.54m
Answer:
(orbital speed of the satellite) V₀ = 3.818 km
Time (t) = 4.5 × 10⁴s
Explanation:
Given that:
The radius of the Earth is 6.37 × 10⁶ m; &
the acceleration of gravity at the satellite’s altitude is 0.532655 m/s
We can calculate the orbital speed of the satellite by using the formula:
Orbital Speed (V₀) = √(r × g)
radius of the orbit (r) = 21000 km + 6.37 × 10⁶ m
= (2.1 × 10⁷ + 6.37 × 10⁶) m
= 27370000
= 2.737 × 10⁷m
Orbital Speed (V₀) = √(r × g)
Orbital Speed (V₀) = √(2.737 × 10⁷ × 0.532655 )
= 3818.215
= 3.818 × 10³
= 3.818 Km
To find the time it takes to complete one orbit around the Earth; we use the formula:
Time (t) = 2 π × 
= 2 × 3.14 × 
= 45019.28
= 4.5 × 10 ⁴ s
Answer:
<em>The new period of oscillation is D) 3.0 T</em>
Explanation:
<u>Simple Pendulum</u>
A simple pendulum is a mechanical arrangement that describes periodic motion. The simple pendulum is made of a small bob of mass 'm' suspended by a thin inextensible string.
The period of a simple pendulum is given by

Where L is its length and g is the local acceleration of gravity.
If the length of the pendulum was increased to 9 times (L'=9L), the new period of oscillation will be:


Taking out the square root of 9 (3):

Substituting the original T:

The new period of oscillation is D) 3.0 T