I'm pretty sure that it's 815.
Answer:
3.88 * 10^(-15) J
Explanation:
We know that the Potential energy of the electron at the beginning of its motion is equal to the Kinetic energy at the end of its motion, when it reaches the plates.
First, we get the potential and potential energy:
Electric potential = E * r
E = electric field
r = distance between plates
Potential = 2.2 * 10^6 * 0.011
= 2.42 * 10^4 V
The relationship between electric potential and potential energy is:
P. E. = q*V
q = charge of electron = 1.602 * 10^(-19) C
P. E. = 2.42 * 10^4 * 1.602 * 10^(-19)
P. E. = 3.88 * 10^(-15) J
Answer:
<h2>
3000 J</h2>
Option C is the correct option.
Explanation:
Given,
Force = 600 N
Distance = 5 meters
Work = ?
Now,
Work = Force
distance

Calculate the product
Joule
Hope this helps...
Good luck on your assignment..
Answer:
1) 1.31 m/s2
2) 20.92 N
3) 8.53 m/s2
4) 1.76 m/s2
5) -8.53 m/s2
Explanation:
1) As the box does not slide, the acceleration of the box (relative to ground) is the same as acceleration of the truck, which goes from 0 to 17m/s in 13 s

2)According to Newton 2nd law, the static frictional force that acting on the box (so it goes along with the truck), is the product of its mass and acceleration

3) Let g = 9.81 m/s2. The maximum static friction that can hold the box is the product of its static coefficient and the normal force.

So the maximum acceleration on the block is

4)As the box slides, it is now subjected to kinetic friction, which is

So if the acceleration of the truck it at the point where the box starts to slide, the force that acting on it must be at 136.6 N too. So the horizontal net force would be 136.6 - 108.3 = 28.25N. And the acceleration is
28.25 / 16 = 1.76 m/s2
5) Same as number 3), the maximum deceleration the truck can have without the box sliding is -8.53 m/s2
Answer:
(D)
Explanation:
Given :
l=3.5 m


Resistance can be calculated as :


Resistance of the wire will be 1.1×
ohms
Option D is correct