Step-by-step explanation:
o2+a2=h2
100} h^{2}=(10ft)^{2} +(17ft)^{2}
h2=100ft2+289ft2
h=389ft2−−−−−√
→19.7ft
this is an example on how to do it
Answer:
3
+ 11a³ - 7a² + 18a - 18
Step-by-step explanation:
<u>When multiplying with two brackets, you need to multiply the three terms, (a²), (4a) and (-6) from the first bracket to all the terms in the second brackets, (3a²), (-a) and (3) individually. I have put each multiplied term in a bracket so it is easier.</u>
(a² + 4a - 6) × (3a² - a + 3) =
(a² × <em>3a²</em>) + {a² × <em>(-a)</em>} + (a² × <em>3</em>) + (4a × <em>3a²</em>) + {4a × <em>(-a)</em>} + (4a × <em>3</em>) + {(-6) × <em>a²</em>) + {(-6) × <em>(-a)</em>} + {(-6) × <em>3</em>}
<u>Now we can evaluate the terms in the brackets. </u>
(a² × 3a²) + {a² × (-a)} + (a² × 3) + (4a × 3a²) + {4a × (-a)} + (4a × 3) + {(-6) × a²) + {(-6) × (-a)} + {(-6) × 3} =
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18)
<u>We can open the brackets now. One plus and one minus makes a minus. </u>
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18) =
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18
<u>Evaluate like terms.</u>
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18 = 3
+ 11a³ - 7a² + 18a - 18
Step-by-step explanation:
x-5 < -3
or, x < -3 +5
or, x < 2
Now,
x +8 >2
or, x >2 - 8
or, x >-6
We can expand the logarithm of a product as a sum of logarithms:

Then using the change of base formula, we can derive the relationship

This immediately tells us that

Notice that none of
can be equal to 1. This is because

for any choice of
. This means we can safely do the following without worrying about division by 0.

so that

Similarly,

so that

So we end up with

###
Another way to do this:



Then

So we have

Answer:
5 1/3
Step-by-step explanation:
2/3 x 8 = 2 x 8 / 3 = 16 / 3 = 5 1/3