U do 5 times 30 and get 150 then take 15 times 50 and get 750 last take 750 plus 150 and u get 900 cm
Cid Sam is a way to remember
C -control S - SAME (keep the same)
I -independent A- alter
D-depend M- measure
independent- number of downloads
Dependant - money spent
Answer:
(1, 3)
Step-by-step explanation:
You are given the h coordinate of the vertex as 1, but in order to find the k coordinate, you have to complete the square on the parabola. The first few steps are as follows. Set the parabola equal to 0 so you can solve for the vertex. Separate the x terms from the constant by moving the constant to the other side of the equals sign. The coefficient HAS to be a +1 (ours is a -2 so we have to factor it out). Let's start there. The first 2 steps result in this polynomial:
. Now we factor out the -2:
. Now we complete the square. This process is to take half the linear term, square it, and add it to both sides. Our linear term is 2x. Half of 2 is 1, and 1 squared is 1. We add 1 into the set of parenthesis. But we actually added into the parenthesis is +1(-2). The -2 out front is a multiplier and we cannot ignore it. Adding in to both sides looks like this:
. Simplifying gives us this:

On the left we have created a perfect square binomial which reflects the h coordinate of the vertex. Stating this binomial and moving the -3 over by addition and setting the polynomial equal to y:

From this form,

you can determine the coordinates of the vertex to be (1, 3)
Answer:
The answer is (d) ⇒ ![pq^{2}r\sqrt[3]{pr^{2}}](https://tex.z-dn.net/?f=pq%5E%7B2%7Dr%5Csqrt%5B3%5D%7Bpr%5E%7B2%7D%7D)
Step-by-step explanation:
* To simplify the cube roots:
If its number then the number must be written in the form x³
then we divide the power by 3 to cancel the radical
If its variable we divide its power by 3 to cancel the radical
∵ ![\sqrt[3]{p^{4}q^{6}r^{5}}=p^{\frac{4}{3}}q^{\frac{6}{3}}r^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bp%5E%7B4%7Dq%5E%7B6%7Dr%5E%7B5%7D%7D%3Dp%5E%7B%5Cfrac%7B4%7D%7B3%7D%7Dq%5E%7B%5Cfrac%7B6%7D%7B3%7D%7Dr%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
∴ 
∵ ![p^{\frac{1}{3}}=\sqrt[3]{p}](https://tex.z-dn.net/?f=p%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D%5Csqrt%5B3%5D%7Bp%7D)
∵ ![r^{\frac{2}{3}}=\sqrt[3]{r^{2}}](https://tex.z-dn.net/?f=r%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%3D%5Csqrt%5B3%5D%7Br%5E%7B2%7D%7D)
∴ ![p(p)^{\frac{1}{3}}q^{2}r(r)^{\frac{2}{3}}=p(\sqrt[3]{p})q^{2}r(\sqrt[3]{r^{2}})](https://tex.z-dn.net/?f=p%28p%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7Dq%5E%7B2%7Dr%28r%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%3Dp%28%5Csqrt%5B3%5D%7Bp%7D%29q%5E%7B2%7Dr%28%5Csqrt%5B3%5D%7Br%5E%7B2%7D%7D%29)
∴ ![prq^{2}\sqrt[3]{pr^{2}}}](https://tex.z-dn.net/?f=prq%5E%7B2%7D%5Csqrt%5B3%5D%7Bpr%5E%7B2%7D%7D%7D)
∴ The answer is (d)