The first thing that needs to be done is to find everything in the same units. 12 hours becomes 43200 seconds. Then find the distance traveled by light in that amount of time. Using the formula v=d/s, manipulate it so it looks like d=v*s. Then plug in the values: d=(3x10^8)*43200, d=1.3x10^13m. But you need to find this in kilometers. To do this, simply divide your answer by one thousand. Thus, a laser beam would travel 1.3x10^10 kilometers in 12 hours.
Answer:
F=8.0*10^{-10}N
Explanation:
See the attached file for the masses distributions
The force between two masses at distance r is expressed as

since the masses are of the same value, the above formula can be reduce to

using vector notation,Let use consider the force on the lower left corner of the mass due to the upper left side of the mass is

The force on the lower left corner of the mass due to the lower right side of the mass is

The force on the lower left corner of the mass due to the upper right side of the mass is

The net force can be express as
![F=\frac{Gm^{2}}{r^{2} }j +\frac{Gm^{2}}{r^{2} }i +\frac{Gm^{2}}{d^{2} }cos\alpha i +\frac{Gm^{2}}{d^{2} }sin\alpha j\\\\F=Gm^{2}[\frac{1}{r^{2}}+ \frac{1}{d^{2}cos\alpha }]i + Gm^{2}[\frac{1}{r^{2}}+ \frac{1}{d^{2}sin\alpha }]j\\\alpha=45^{0}, G=6.67*10^{-11}Nmkg^{-2}](https://tex.z-dn.net/?f=F%3D%5Cfrac%7BGm%5E%7B2%7D%7D%7Br%5E%7B2%7D%20%7Dj%20%2B%5Cfrac%7BGm%5E%7B2%7D%7D%7Br%5E%7B2%7D%20%7Di%20%2B%5Cfrac%7BGm%5E%7B2%7D%7D%7Bd%5E%7B2%7D%20%7Dcos%5Calpha%20i%20%2B%5Cfrac%7BGm%5E%7B2%7D%7D%7Bd%5E%7B2%7D%20%7Dsin%5Calpha%20j%5C%5C%5C%5CF%3DGm%5E%7B2%7D%5B%5Cfrac%7B1%7D%7Br%5E%7B2%7D%7D%2B%20%5Cfrac%7B1%7D%7Bd%5E%7B2%7Dcos%5Calpha%20%7D%5Di%20%2B%20Gm%5E%7B2%7D%5B%5Cfrac%7B1%7D%7Br%5E%7B2%7D%7D%2B%20%5Cfrac%7B1%7D%7Bd%5E%7B2%7Dsin%5Calpha%20%7D%5Dj%5C%5C%5Calpha%3D45%5E%7B0%7D%2C%20G%3D6.67%2A10%5E%7B-11%7DNmkg%5E%7B-2%7D)
if we insert values we arrive at
![F=6.67*10^{-11}*2.5^{2}[\frac{1}{1^{2}}+ \frac{1}{\sqrt{2}^{2}cos45 }]i + 6.67*10^{-11}*2.5^{2}[\frac{1}{1^{2}}+ \frac{1}{\sqrt{2}^{2}sin45}]j\\F=5.643*10^{-10}i+5.643*10^{-10}j](https://tex.z-dn.net/?f=F%3D6.67%2A10%5E%7B-11%7D%2A2.5%5E%7B2%7D%5B%5Cfrac%7B1%7D%7B1%5E%7B2%7D%7D%2B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%5E%7B2%7Dcos45%20%7D%5Di%20%2B%206.67%2A10%5E%7B-11%7D%2A2.5%5E%7B2%7D%5B%5Cfrac%7B1%7D%7B1%5E%7B2%7D%7D%2B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%5E%7B2%7Dsin45%7D%5Dj%5C%5CF%3D5.643%2A10%5E%7B-10%7Di%2B5.643%2A10%5E%7B-10%7Dj)
if we solve for the magnitude, we arrive at

Hence the net force on one of the masses is

Answer:
Answer if this question neon street sign
Explanation:
may this answer is helpful for you
Equal because the book is not moving and the forces are balanced/equal