Step 1: Set up the synthetic division. ...
Step 2: Bring down the leading coefficient to the bottom row.
Step 3: Multiply c by the value just written on the bottom row. ...
Step 4: Add the column created in step 3.
Answer:
f(x) = 3^x -3
Step-by-step explanation:
The horizontal asymptote of an unmodified exponential function is y=0. Here, the horizontal asymptote is y=-3, so your answer will be of the form ...
f(x) = [some growing exponential term] -3
Only the second selection has this form. It also matches the given graph at x=1.
Function is p(x)=(x-4)^5(x^2-16)(x^2-5x+4)(x^3-64)
first factor into (x-r1)(x-r2)... form
p(x)=(x-4)^5(x-4)(x+4)(x-4)(x-1)(x-4)(x^2+4x+16)
group the like ones
p(x)=(x-4)^8(x+4)^1(x-1)^1(x^2+4x+16)
multiplicity is how many times the root repeats in the function
for a root r₁, the root r₁ multiplicity 1 would be (x-r₁)^1, multility 2 would be (x-r₁)^2
so
p(x)=(x-4)^8(x+4)^1(x-1)^1(x^2+4x+16)
(x-4)^8 is the root 4, it has multiplicity 8
(x-(-4))^1 is the root -4 and has multiplicity 1
(x-1)^1 is the root 1 and has multiplity 1
(x^2+4x+16) is not on the real plane, but the roots are -2+2i√3 and -2-2i√3, each multiplicity 1 (but don't count them because they aren't real
baseically
(x-4)^8 is the root 4, it has multiplicity 8
(x-(-4))^1 is the root -4 and has multiplicity 1
(x-1)^1 is the root 1 and has multiplity 1