In my research I figured out that it would be the 4th one
Answer:
E1: Pyruvate dehydrogenase, TPP, oxidative decarboxylation reaction
E2: Dihydrolipoyl transacetylase, Lipoamide and Co-enzyme A, transacetylation reaction.
E3: Dihydrolipoyl dehydrogenase, FAD and NAD+, oxidation reaction
Explanation:
Pyruvate dehydrogenase is a multi-enzyme complex with 5 co-enzymes and 3 apo-enzymes:
Pyruvate dehydrogenase (E1) , which uses thiamine pyrophosphate (TPP) as as co-enzymes to catalyze oxidative decarboxylation of pyruvate to hydroxyethyl-TPP.
Dihydrolipoyl transacetylase (E2): which uses lipoamide and coenzyme A as co-enzymes to catalyse the transacetylation from TPP to Lipoamide to form acetyl lipoamide.
Dihydrolipoyl dehydrogenase (E3) which uses FAD and NAD+ as co-enzymes to catalyze the oxidation of lipoamide
The answer that goes in the blank is Division.
Answer:
Distinct mechanisms are used by bacteria in order to transfer the gene from one bacteria to another. These are transformation, transduction, and conjugation. Transformation refers to the process of uptaking extracellular DNA by the recipient of the other bacterial cell.
In the process of transduction, the donor DNA gets packed within the bacteriophage and infects the recipient bacteria. In the process of conjugation, the genetic substance is transferred by the donor bacteria to the recipient via the process of mating.
a. Of all these three mechanisms, transformation is the process that exhibits a broad range and can be easily performed in the lab. As in the process, there is a slight chance of rejection or failure due to direct compatibility between the bacteria.
b. While the narrowest broad range is found in the process of conjugation, as in order to transfer the genetic substance between the two bacterial species, there should be a similarity between the two species so that they can mate and exchange the genetic substance in between them.
<span>the part of science that deals with microorganisms</span>