Answer:
segment EG over segment LN equals segment FG over segment MN
Step-by-step explanation:
we know that
If two figures are similar, then the ratio of its corresponding sides is proportional and its corresponding angles are congruent
In this problem
The corresponding sides are
EF and LM 
EG and LN
FG and MN
The corresponding angles are
∠E≅∠L
∠F≅∠M
∠G≅∠N
therefore
EF/LM=EG/LN=FG/MN=3/1
 
        
                    
             
        
        
        
XZ ≅ EG and YZ ≅ FG is enough to make triangles to be congruent by HL. Option b is correct.
Two triangles ΔXYZ and ΔEFG, are given with Y and F are right angles.
Condition to be determined that proves triangles to be congruent by HL.
<h3>What is HL of triangle?</h3>
HL implies the hypotenuse and leg pair of the right-angle triangle.
Here, two right-angle triangles ΔXYZ and ΔEFG are congruent by HL only if their hypotenuse and one leg are equal, i.e. XZ ≅ EG and YZ ≅ FG respectively.
Thus, XZ ≅ EG and YZ ≅ FG are enough to make triangles congruent by HL.
Learn more about HL here:
brainly.com/question/3914939
#SPJ1
In ΔXYZ and ΔEFG, angles Y and F are right angles. Which set of congruence criteria would be enough to establish that the two triangles are congruent by HL?
A.
XZ ≅ EG and ∠X ≅ ∠E
B.
XZ ≅ EG and YZ ≅ FG
C.
XZ ≅ FG and ∠X ≅ ∠E
D.
XY ≅ EF and YZ ≅ FG
 
        
             
        
        
        
Answer: 159.5
Step-by-step explanation:
If 22% if is 9.90 you add 149.60+ 9.90 and you get 159.5. I'm sorry if this is wrong, I tried
 
        
                    
             
        
        
        
Answer:
it is A (2,21)
Step-by-step explanation:
i took the test