Given the table below representing the number of hours of television nine Math II class students watched the night before a big test on
triangles
along with the grades they each earned on that test.
![\begin{center} \begin{tabular} {|c|c|} Hours Spent Watching TV & Grade on Test (out of 100) \\ [1ex] 4 & 71 \\ 2 & 81 \\ 4 & 62 \\ 1 & 86 \\ 3 & 77 \\ 1 & 93 \\ 2 & 84 \\ 3 & 80 \\ 2 & 85 \end{tabular} \end{center}](https://tex.z-dn.net/?f=%5Cbegin%7Bcenter%7D%0A%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0AHours%20Spent%20Watching%20TV%20%26%20Grade%20on%20Test%20%28out%20of%20100%29%20%20%5C%5C%20%5B1ex%5D%0A4%20%26%2071%20%5C%5C%20%0A2%20%26%2081%20%5C%5C%20%0A4%20%26%2062%20%5C%5C%20%0A1%20%26%2086%20%5C%5C%20%0A3%20%26%2077%20%5C%5C%20%0A1%20%26%2093%20%5C%5C%20%0A2%20%26%2084%20%5C%5C%20%0A3%20%26%2080%20%5C%5C%20%0A2%20%26%2085%0A%5Cend%7Btabular%7D%0A%5Cend%7Bcenter%7D)
Let the number the number of hours of television each of the students watched the night before the test be x while the grades they each earned on that test be y.
We use the following table to find the equation of the line of best fit of the regression analysis of the data.
![\begin{center} \begin{tabular} {|c|c|c|c|} x & y & x^2 & xy \\ [1ex] 4 & 71 & 16 & 284 \\ 2 & 81 & 4 & 162 \\ 4 & 62 & 16 & 248 \\ 1 & 86 & 1 & 86 \\ 3 & 77 & 9 & 231 \\ 1 & 93 & 1 & 93 \\ 2 & 84 & 4 & 168 \\ 3 & 80 & 9 & 240 \\ 2 & 85 & 4 & 170 \\ [1ex]\Sigma x=22 & \Sigma y=719 & \Sigma x^2=64 & \Sigma xy=1,682 \end{tabular} \end{center}](https://tex.z-dn.net/?f=%5Cbegin%7Bcenter%7D%20%5Cbegin%7Btabular%7D%20%7B%7Cc%7Cc%7Cc%7Cc%7C%7D%20x%20%26%20y%20%26%20x%5E2%20%26%20xy%20%5C%5C%20%5B1ex%5D%204%20%26%2071%20%26%2016%20%26%20284%20%5C%5C%202%20%26%2081%20%26%204%20%26%20162%20%5C%5C%204%20%26%2062%20%26%2016%20%26%20248%20%5C%5C%201%20%26%2086%20%26%201%20%26%2086%20%5C%5C%203%20%26%2077%20%26%209%20%26%20231%20%5C%5C%201%20%26%2093%20%26%201%20%26%2093%20%5C%5C%202%20%26%2084%20%26%204%20%26%20168%20%5C%5C%203%20%26%2080%20%26%209%20%26%20240%20%5C%5C%202%20%26%2085%20%26%204%20%26%20170%20%5C%5C%20%5B1ex%5D%5CSigma%20x%3D22%20%26%20%5CSigma%20y%3D719%20%26%20%5CSigma%20x%5E2%3D64%20%26%20%5CSigma%20xy%3D1%2C682%20%5Cend%7Btabular%7D%20%5Cend%7Bcenter%7D)
Recall that the equation of the line of best fit of a regression analysis is given by

where:

and


Thus, the equation of the line of best fit is given by y = 97.95 - 7.391x
<span>A student that watched 1.5 hours of TV will have a score given by
y = 97.95 - 7.391(1.5) = 97.95 - 11.0865 = 86.8635
Therefore, </span><span>a student’s score if he/she watched 1.5 hours of TV to the nearest whole number is 87.</span>
The Median is the middle value.
Arrange the numbers in order from smallest to largest:
Seattle: 23.78 , 32.46, 40.30, 45.79, 49.42, 55.14
Since there is an even number, the median is found by adding the 2 middle numbers and dividing by 2.
Median for Seattle: 40.30 + 45.79 = 86.09 / 2 = 43.045
Now do the same for Las Vegas:
2.33, 3.72, 3.84, 4.11, 5.62, 8.79
Median for Las Vegas: 3.84 + 4.11 = 7.95 / 2 = 3.975
Difference: 43.045 - 3.975 = 39.07
The answer is B.
Answer:
15
Step-by-step explanation:
Math is fun.
Answer: An article was sold at a 20% discount, at Rs. 400. What was its marked price?
Let M denotes the required marked price of the given article.
Hence from above data we get following relation,
(1 - 20/100)*M = 400
or (4/5)*M = 400
or M = (5/4)*400 = 500 (Rs) [Ans]
Step-by-step explanation: