Whenever you face the problem that deals with maxima or minima you should keep in mind that minima/maxima of a function is always a point where it's derivative is equal to zero.
To solve your problem we first need to find an equation of net benefits. Net benefits are expressed as a difference between total benefits and total cost. We can denote this function with B(y).
B(y)=b-c
B(y)=100y-18y²
Now that we have a net benefits function we need find it's derivate with respect to y.

Now we must find at which point this function is equal to zero.
0=100-36y
36y=100
y=2.8
Now that we know at which point our function reaches maxima we just plug that number back into our equation for net benefits and we get our answer.
B(2.8)=100(2.8)-18(2.8)²=138.88≈139.
One thing that always helps is to have your function graphed. It will give you a good insight into how your function behaves and allow you to identify minima/maxima points.
let's recall the remainder theorem.
we know that (x-1) is a factor, that means x -1 = 0 or x = 1.
since we know that (x-1) is a factor, then dividing the polynomial by it will give us a remainder of 0, which correlates with saying that f(1) = 0, in this case, so we can simply plug in "1" as the argument, knowing it gives 0.
![f(x)=3x^3+kx-11\\\\[-0.35em]~\dotfill\\\\\stackrel{0}{f(1)}=3(1)^3+k(1)-11\implies \stackrel{f(1)}{0}=3+k-11\implies 0=-8+k\implies 8=k](https://tex.z-dn.net/?f=f%28x%29%3D3x%5E3%2Bkx-11%5C%5C%5C%5C%5B-0.35em%5D~%5Cdotfill%5C%5C%5C%5C%5Cstackrel%7B0%7D%7Bf%281%29%7D%3D3%281%29%5E3%2Bk%281%29-11%5Cimplies%20%5Cstackrel%7Bf%281%29%7D%7B0%7D%3D3%2Bk-11%5Cimplies%200%3D-8%2Bk%5Cimplies%208%3Dk)
Answer:
1/59049
Step-by-step explanation:
In order to do these, simply translate the sentence mathematically.
1) x-15=7
2)3x+4=13
3)x+x+2+x+4=51
Hope this helped :D. Comment below if you have any questions!