Answer:
Thinking graphically, these correspond to the graph of the straight line (a) missing the graph of the parabola entirely, (b) kissing the parabola at one point or (c) cutting across the parabola and coinciding with it at 2 points.
Step-by-step explanation:
Explanation:
Graphically, a quadratic equation is a parabola and a linear equation is a straight line.
i hope it helps
Answer:
1/6
Step-by-step explanation:
Given:
- Length of the trough: 9 ft
=> The volume of the trough: V =
* (b * h) (1)
- An isosceles right triangle with hypotenuse 2 feet
=> the other two sides of the triangle is:
= tan(45 degrees) = h/(b/2)
<=> b = 2h substitute in (1), we have:
V =
*(2h *h) = 9
Take derivative of volume with respect to time to find equation for rate of filling the trough
dV/dt = 2 * 9 *h dh/dt = 18h dh/dt
<=> dh/dt = dV/dt /(18h)
As we know that, dV/dt = 2
So, dh/dt = 2 / 18h = 1/9h
<=> V = t * rate = 2 * 2 = 4
But V = 9
<=> 9
= 4
<=> h = 2/3
The rate is the height h feet of the water in the trough changing 2 minutes after the water begins to flow:
dh/dt = 1/(9h) = 1/(9 * 2/3) = 1/6
i think it is because...
the slope of line b is slightly steeper than the slope of line a.
hope this helps!
wait do you want it step by step or just the answer?
the answer is 400