So distribute using distributive property
a(b+c)=ab+ac so
split it up
(5x^2+4x-4)(4x^3-2x+6)=(5x^2)(4x^3-2x+6)+(4x)(4x^3-2x+6)+(-4)(4x^3-2x+6)=[(5x^2)(4x^3)+(5x^2)(-2x)+(5x^2)(6)]+[(4x)(4x^3)+(4x)(-2x)+(4x)(6)]+[(-4)(4x^3)+(-4)(-2x)+(-4)(6)]=(20x^5)+(-10x^3)+(30x^2)+(16x^4)+(-8x^2)+(24x)+(-16x^3)+(8x)+(-24)
group like terms
[20x^5]+[16x^4]+[-10x^3-16x^3]+[30x^2-8x^2]+[24x+8x]+[-24]=20x^5+16x^4-26x^3+22x^2+32x-24
the asnwer is 20x^5+16x^4-26x^3+22x^2+32x-24
9514 1404 393
Answer:
10√5
Step-by-step explanation:
The geometric mean of two numbers is the square root of their product.
m = √(20×25) = √500 = √100 × √5
m = 10√5
The geometric mean of 20 and 25 is 10√5.
Answer:
A) y = -1/2x + 1/2
Step-by-step explanation:
Find the y-intercept(when x = 0), which is 1/2.
Find the slope: m = y2-y1 / x2-x1
I used points: (3, -1), (-3,2)
m = 2 - (-1) / -3 - 3
m = 3 / - 6
m = -1/2
plug this into the slope intercept form equation: y = mx + b
y = -1/2x + 1/2
(x-3) *squared* + (y + 2) *squared* = 6
4,5,9,10
just add two to each number