Atomic radius decreases with the increase of atomic number and mass number because the nuclear charge attracts the outermost shell leads to lower distance of the atom.
<h3>
What is the trend of atomic radius across the periodic table?</h3>
Atomic radius decreases when we go from left to right to a period and increases down a group. In a period, effective nuclear charge increases as electron shielding remains the same. An atom gets larger as the number of orbits or shells increases. The radius of atoms increases as you go down the group in the periodic table. The size of an atom will decrease as you move from left to the right in a period. Within a period, protons are added to the nucleus which attracts electrons closer to the nucleus because of its increased positive charge i.e. proton. So that's why we can say that the force of attraction between nuclei and electrons increases, the atomic radius of the atoms decreases.
So we can conclude that Atomic radius decreases with the increase of atomic number and mass number because the nuclear charge attracts the outermost shell leads to lower distance of the atom.
Learn more about atomic radius here: brainly.com/question/15255548
#SPJ1
Answer:
<h2>3.18 × 10²³ atoms</h2>
Explanation:
The number of atoms can be found by using the formula
N = n × L
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
N = 0.529 × 6.02 × 10²³
We have the final answer as
<h3>3.18 × 10²³ atoms</h3>
Hope this helps you
Answer:2.2059
Explanation:find their total ram is(14+(1×3))
Find the portion occupied by
H2 which is three
Divide h2 by total ram then multiply by mass
Answer:
True
Explanation:
The core of the earth is very dense so that leads me to beleive that the answer is true.
Answer is: freezing point is -0,226°C.
Answer is: the molal concentration of glucose in this solution is 1,478 m.
m(KCl) = 15 g.
n(KCl) = m(KCl) ÷ M(KCl).
n(KCl) = 15 g ÷ 74,55 g/mol.
n(KCl) = 0,2 mol
m(H₂O) = 1650 g ÷ 1000 g/kg = 1,65 kg.
b = n(KCl) ÷ m(H₂O).
b = 0,2 mol ÷ 1,65 kg = 0,122 m.
Kf(water) = 1,86°C/m.
ΔT = Kf(water) · b(solution).
ΔT = 1,86°C/m · 0,122 m.
ΔT = 0,226°C.