Answer:
Equilibrium constant Kc = Qc = quotient of reactant(s) and product(s)
Kc = [C]x[D]y..../[A]m[B]n..... = 0.328dm3/mol, where [C]x[D]y is the product and [A]m[B]n is the reactant(Both in gaseous states)
Explanation:
When a mixture of reactants and products of a reaction reaches equilibrium at a given temperature, its reaction quotient always has the same value. This value is called the equilibrium constant (K) of the reaction at that temperature. As for the reaction quotient, when evaluated in terms of concentrations, it is noted as Kc.
That a reaction quotient always assumes the same value at equilibrium can be expressed as:
Qc (at equilibrium) = Kc =[C]x[D]y…/[A]m[B]n…
This equation is a mathematical statement of the law of mass action: When a reaction has attained equilibrium at a given temperature, the reaction quotient for the reaction always has the same value.
Answer:
I > III > II
Explanation:
I) A disulfide bond between two cystines is created when a sulfur atom from one cystine forms a strong, single covalent bond with a sulfur atom from a second cystine. When a disulfide bond is created, each cystine loses one hydrogen atom. The atom count is 11 for a cystine in mid-chain, but changes to 10 if the cystine joins with another in a disulfide bond. This lead to a much more stable intermolecular interaction.
III) Hydrogen Bonding in water
These hydrogen bonds are at best an interaction, inducing slight positive and negative charges in the Hydrogen and Oxygen/Nitrogen atoms.
The Hydrophilic amino acids have O & N atoms, which form hydrogen bonds with water. These atoms have an uneven distribution of electrons, creating a polar molecule that can interact and form hydrogen bonds with water.
The hydrogen bonds aren't as strong as the covalent bonds in disulfides.
II) Hydrophobic interactions between two leucines
A hydrophobic interaction is formed between two nonpolar molecules.
It describes the preference of nonpolar molecular surfaces to interact with other nonpolar molecular surfaces, thereby displacing water molecules from the interacting surfaces.
Answer:
Cone Cell
Explanation:
There are about six to seven million cones in a human eye and are most concentrated towards the macula. Cones are less sensitive to light than the rod cells in the retina (which support vision at low light levels), but allow the perception of color.
1 mol --- 22,4 dm³
2,1 mol --- X
X = 2,1×22,4
X = 47,04 dm³ = 47,04 L
C)