Answer:
2 mol H
Explanation:
For every 2 mol of NaOH, we're reacting 2 mol of H2O. In order to figure out how many mol of H are needed, it needs to be set up stochiometrically. Starting off with the given value, 1 mol of NaOH, we can then make a mol to mol ratio. For 2 mol of NaOH, we have 2 mol of H2O. For every 2 mol of H2O, we have 4 mol of H (this is because we are multiplying the coefficient by the subscript: 2 × 2). Now, we can solve for our answer.
1 mol NaOH × (2 mol H₂O / 2 mol NaOH) × (4 mol H / 2 mol H₂O)
= 2 mol H
Thus, we get 2 mol of H are needed to completely react 1 mol of NaOH.
A significant MOE exists compared to developmental toxicity effect levels.
Blood alcohol levels from ABHS approximate consumption of non-alcoholic beverages.
No significant risk of developmental toxicity is expected from ABHS use.
Ethanol-based topical antiseptic hand rubs, commonly referred to as alcohol-based hand sanitizers (ABHS), are routinely used as the standard of care to reduce the presence of viable bacteria on the skin and are an important element of infection control procedures in the healthcare industry.
There are no reported indications of safety concerns associated with the use of these products in the workplace. However, the prevalence of such alcohol-based products in healthcare facilities and safety questions raised by the U.S. FDA led us to assess the potential for developmental toxicity under relevant product-use scenarios.
Estimates from a physiologically based pharmacokinetic modeling approach suggest that occupational use of alcohol-based topical antiseptics in the healthcare industry can generate low, detectable concentrations of ethanol in blood.
This unintended systemic dose probably reflects contributions from both dermal absorption and inhalation of the volatilized product.
Learn more about Ethanol at
brainly.com/question/5750283
#SPJ4
Answer:
Moving Across a Period
Moving from left to right across a period, the atomic radius decreases. The nucleus of the atom gains protons moving from left to right, increasing the positive charge of the nucleus and increasing the attractive force of the nucleus upon the electrons
Answer: CF4
Explanation:
Calculate the molar mass of each compound. Divide the molar mass of Carbon by the molar mass of each compound, then multiply the answer by 100 to get the percentage.
CF4= 12+(19X 4)
=12+76= 88 g/mol
%C= 12/88 x 100= 13.64%
CO2= 12+(16 X 2)
12+32= 44 G/MOL
%C= 12/44 x 100= 27.3%
CH4= 12+ (1 X4)
=12+4
=16 G/MOL
%C= 12/16 X 100= 75%
C204
(12X2) + (16X4)
24+64
= 88 g/mol
%C= 24/88 x 100
= 27.3%