Answer:
1.18 moles of CS₂ are produced by the reaction.
Explanation:
We present the reaction:
5C + 2SO₂ → CS₂ + 4CO
5 moles of carbon react to 2 moles of sulfur dioxide in order to produce 1 mol of carbon disulfide and 4 moles of carbon monoxide.
As we do not have data from the SO₂, we assume this as the excess reagent. We convert the mass of carbon to moles:
70.8 g / 12 g/mol = 5.9 moles
Ratio is 5:1, so 5 moles of carbon react to produce 1 mol of CS₂
Then, 5.9 moles will produce (5.9 . 1) / 5 = 1.18 moles
The formation of elements heavier than iron and nickel requires the input of energy. Supernova explosions result when the cores of massive stars have exhausted their fuel supplies and burned everything into iron and nickel. The nuclei with mass heavier than nickel are thought to be formed during these explosions.
Answer:
the percentage by mass of Nickel(II) iodide = 23.58%
Explanation:
% by mass of solute = (mass of solute/mass of solution) x 100%
% by mass of NiI2 = (mass of NiI2/mass of solution) x 100%
% by mass of NiI2 = (5.47 grams/23.2 grams) x 100% = 23.58% m/m
Answer:
0.4762 J/g°C.
Explanation:
<em>The amount of heat released to water = Q = m.c.ΔT.</em>
where, m is the mass of water (m = 15.0 g).
c is the specific heat capacity of water = ??? J/g°C.
ΔT is the temperature difference = (final T - initial T = 37.0°C - 30.0°C = 7.0°C).
<em>∴ The specific heat capacity of water = c = Q/m.ΔT</em> = (50.0 J)/(15.0 g)(7.0°C) = <em>0.4762 J/g°C.</em>