C. quadruples the rate
<h3>Further explanation</h3>
Given
The rate law :
R=k[A]²
Required
The rate
Solution
There are several factors that influence reaction kinetics :
- 1. Concentration
- 2. Surface area
- 3. Temperature
- 4. Catalyst
- 5. Pressure
- 6. Stirring
The rate is proportional to the concentration.
If the concentration increased, the reaction rate will increase
The reaction is second-order overall(The exponent is 2)
The concentration of A is doubled, the reaction rate will increase :
r = k[A]² ⇒ r= k[2A]²⇒r=4k[A]²
<em>The reaction rate will quadruple.</em>
Answer:
Ge: [Ar] 3d10 4s2 4p2 => 6 electrons in the outer shell
Br: [Ar] 3d10 4s2 4p5 => 7 electrons in the outer shell
Kr: [Ar] 3d10 4s2 4p6 => 8 electrons in the outer shell
Explanation:
The electron affinity or propension to attract electrons is given by the electronic configuration. Remember that the most stable configuration is that were the last shell is full, i.e. it has 8 electrons.
The closer an atom is to reach the 8 electrons in the outer shell the bigger the electron affinity.
Of the three elements, Br needs only 1 electron to have 8 electrons in the outer shell, so it has the biggest electron affinity (the least negative).
Ge: needs 2 electrons to have 8 electrons in the outer shell, so it has a smaller (more negative) electron affinity than Br.
Kr, which is a noble gas, has 8 electrons and is not willing to attract more electrons at all, the it has the lowest (more negative) electron affinity of all three to the extension that really the ion is so unstable that it does not make sense to talk about a number for the electron affinity of this atom.
Read more on Brainly.com - brainly.com/question/1832586#readmore
Answer:

Explanation:
The breakdown reaction of ozone is as follows




It can be seen that 2 moles of ozone is required in the complete cycle
So for 10 cycles, 20 moles of ozone is required
m = Mass of
= 15.5 g
M = Molar mass of
= 104.46 g/mol
P = Pressure = 24.5 mmHg
T = Temperature = 232 K
R = Gas constant = 
Number of moles is given by


From ideal gas law we have

For 20 cycles of the reaction the volume of the ozone is
.
Answer:

Explanation:
Molarity is a measure of concentration in moles per liter.

The molarity of the solution is 1.2 M NaNO₃ or 1.2 moles NaNO₃ per liter. There are 0.25 liters of the solution. The moles of solute are unknown, so we can use x.
- molarity= 1.2 mol NaNO₃/L
- liters of solution=0.25 L
- moles of solute =x

We are solving for x, so we must isolate the variable, x. It is being divided by 0.25 liters. The inverse of division is multiplication, so we multiply both sides by 0.25 L.


The units of liters cancel, so we are left with the units moles of sodium nitrate.


There are 0.3 moles of sodium nitrate.