Answer:
The mass of the cable is 4.94 kg
Explanation:
It is given that,
Mass of the block, m = 20 kg
Force applied to the cable, F = 110 N
Speed of the block, v = 4.2 m/s
Distance, d = 2 m
Let a is the acceleration of the block. It can be calculated using the third equation of motion as :



Let m' is the mass of the cable. It can be calculated using the second law of motion as :


m = 4.94 kg
So, the mass of the cable is 4.94 kg. Hence, this is the required solution.
Answer:
first order date and most recent order date
Explanation:
it was switched. column 5 should be most recent order date because it's 2020 while column 6 should be first order date because it was in 2019
I think wavelength because the radios volume is being turned up.
Answer:
10 m/s
Explanation:
Kinetic energy=
mv² where m is mass and v is velocity.
We have to make v the subject so we should rearrange the equation
K=
mv²
v²=
(use algebra)
v²= 7/0.5×0.140
v²=100
v=√100
v=10 m/s
We can confirm this by using the kinetic energy formula.
K=
×0.140×10²
K= 7 J
Hence it is proved that velocity is 10 m/s
Answer with Explanation:
Electric field:It is the force per unit charge experienced by rest charge at any given point.
It is the area around the charge which is placed at rest.It is represented by E.
Mathematical formula:

Magnetic field:It is an area around moving charge in which moving charge particle experienced magnetic force in that area.
Magnetic field is represented by B.
Mathematical formula :

Where B=Magnetic field
q=Charge on particle
v=Velocity of particle
F=Magnetic force exert on particle