6/11(5/6)+2/11(5)
=5/11+10/11
=15/11
Compound Interest Formula:
A = P(1 + r/n)^(nt)
A= Accumulated amount with interest P= principal= $1000
R= annual interest rate (decimal)= 0.05
N= # times compounded per year= 12
T= # of years= 10
A= 1000(1 + 0.05/12)^(12*10)
divide inside parentheses first
A= 1000(1 + 0.0041666667)^ (12*10)
add inside parentheses
A= 1000(1.0041666667)^ (12*10)
multiply exponents
A= 1000(1.0041666667)^120
multiply parentheses by exponents
A= 1000(1.6470095043)
multiply last two numbers
A= $1,647.01 amount after 10 years
ANSWER:
D) $1647.01 total after 10 years
Hope this helps! :)
Answer:
16.81
Step-by-step explanation:
P = 4a.
then the length of a side is 16.4 /4 = 4.1.
A = a * a = 4.1 * 4.1 = 16.81
Consider expanding the right hand side as
![y=\sqrt[3]{\dfrac{x(x-2)}{x^2+1}}=x^{1/3}(x-2)^{1/3}(x^2+1)^{-1/3}](https://tex.z-dn.net/?f=y%3D%5Csqrt%5B3%5D%7B%5Cdfrac%7Bx%28x-2%29%7D%7Bx%5E2%2B1%7D%7D%3Dx%5E%7B1%2F3%7D%28x-2%29%5E%7B1%2F3%7D%28x%5E2%2B1%29%5E%7B-1%2F3%7D)
Then taking the logarithm of both sides and applying some properties of the logarithm, you have

Now differentiate both sides with respect to
:


![\dfrac{\mathrm dy}{\mathrm dx}=\dfrac23\dfrac{x^2+x-1}{x(x-2)(x^2+1)}\sqrt[3]{\dfrac{x(x-2)}{x^2+1}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D%5Cdfrac23%5Cdfrac%7Bx%5E2%2Bx-1%7D%7Bx%28x-2%29%28x%5E2%2B1%29%7D%5Csqrt%5B3%5D%7B%5Cdfrac%7Bx%28x-2%29%7D%7Bx%5E2%2B1%7D%7D)