Give me the characteristics and I’ll give you the examples
<span>Given: Rectangle ABCD
Prove: ∆ABD≅∆CBD
Solution:
<span> Statement Reason
</span>
ABCD is a parallelogram Rectangles are parallelograms since the definition of a parallelogram is a quadrilateral with two pairs of parallel sides.
Segment AD = Segment BC The opposite sides of a parallelogram are Segment AB = Segment CD congruent. This is a theorem about the parallelograms.
</span>∆ABD≅∆CBD SSS postulate: three sides of ΔABD is equal to the three sides of ∆CBD<span>
</span><span>Given: Rectangle ABCD
Prove: ∆ABC≅∆ADC
</span>Solution:
<span> Statement Reason
</span>
Angle A and Angle C Definition of a rectangle: A quadrilateral
are right angles with four right angles.
Angle A = Angle C Since both are right angles, they are congruent
Segment AB = Segment DC The opposite sides of a parallelogram are Segment AD = Segment BC congruent. This is a theorem about the parallelograms.
∆ABC≅∆ADC SAS postulate: two sides and included angle of ΔABC is congruent to the two sides and included angle of ∆CBD
The answer is 32/9 , or 1.68.
Answer:
g(x) = -2x - 5
2x becomes -2x as a reflection across the y-axis
add on -5 to shift the function 5 units down