Pythagoras Theorem:
hipotenuse²=leg₁²+leg₂²
First posible triangle:
hypotenuse=13 (13²=169)
leg₁=12 ( 12²=144)
leg₂=5 (5²=25)
13³=144 + 25
Answer:can be side lengths of a triangle
Second triangle:
hypotenuse=12.6 (12.6²=158.76)
leg₁=6.7 ( 6.7²=44.89)
leg₂=6.5 (6.5²=42.25)
leg₁²+leg₂²=44.89+42.25=87.14≠158.76
Answer: cannot be side lenghts of a triangle.
third triangle:
hypotenuse=13 (13²=169)
leg₁=12 ( 12²=144)
leg₂=11 (11²=121)
leg₁²+leg₂²=144+121=265≠169
Answer: cannot be side lenghts of a triangle.
fourth triangle:
hypotenuse=13 (13²=169)
leg₁=6 ( 6²=36)
leg₂=4 (4²=16)
leg₁²+leg₁²=36+16=52≠169
Answer: cannot be side lenghts of a triangle.
first off, let's notice the parabola is a vertical one, therefore the squared variable is the x, and the parabola is opening upwards, meaning the coefficient of x² is positive.
let's notice the vertex, or U-turn, is at (-2, 2)
![\bf ~~~~~~\textit{parabola vertex form} \\\\ \begin{array}{llll} \boxed{y=a(x- h)^2+ k}\\\\ x=a(y- k)^2+ h \end{array} \qquad\qquad vertex~~(\stackrel{-2}{ h},\stackrel{2}{ k}) \\\\\\ y=+1[x-(-2)]^2+2\implies y=(x+2)^2+2](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~%5Ctextit%7Bparabola%20vertex%20form%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Cboxed%7By%3Da%28x-%20h%29%5E2%2B%20k%7D%5C%5C%5C%5C%20x%3Da%28y-%20k%29%5E2%2B%20h%20%5Cend%7Barray%7D%20%5Cqquad%5Cqquad%20vertex~~%28%5Cstackrel%7B-2%7D%7B%20h%7D%2C%5Cstackrel%7B2%7D%7B%20k%7D%29%20%5C%5C%5C%5C%5C%5C%20y%3D%2B1%5Bx-%28-2%29%5D%5E2%2B2%5Cimplies%20y%3D%28x%2B2%29%5E2%2B2%20)
The answer for this is n(3+2)