(8x 2 −15x)−(x 2 −27x)=ax 2 +bxleft parenthesis, 8, x, squared, minus, 15, x, right parenthesis, minus, left parenthesis, x, squ
quester [9]
Answer:
<h2>5</h2>
Step-by-step explanation:
Given the expression (8x² −15x)−(x² −27x) = ax² +bx, we are to determine the value of b-a. Before we determine the vwlue of b-a, we need to first calculate for the value of a and b from the given expression.
On expanding the left hand side of the expression we have;
= (8x² −15x)−(x² −27x)
Open the paranthesis
= 8x² −15x−x²+27x
collect the like terms
= 8x²−x²+27x −15x
= 7x²+12x
Comparing the resulting expression with ax²+bx
7x²+12x = ax²+bx
7x² = ax²
a = 7
Also;
12x = bx
b =12
The value of b - a = 12 - 7
b -a = 5
Hence the value of b-a is equivalent to 5
Answer:
<h2>1. subtract 3x, subtract 4, divide by -4</h2><h2 /><h2>2. add x</h2>
Step-by-step explanation:
1 + 3x = -x + 4.
subtract 3x
1 = -4x + 4
subtract 4
-3 = -4x
divide by -4
(-3)/(-4) = (4x)/(-4) ⇌ x = 3/4
-x + 6 = 5 - 3x
subtract 5
-x + 1 = - 3x
add x
1 = -2x
Answer:
1. {xx < 13} 3. {yy < 5} 5. {tt > -42} 7. {dd ≤ 4}
9. {kk ≥ -3} 11. {zz < -2} 13. {mm < 29}
15. {bb ≥ -16} 17. {zz > -2} 19. {bb ≤ 10}
21. {qq ≥ 2} 23. ⎧
⎨
⎩
ww ≥ - _7
3
⎫
⎬
⎭
Lesson 0-7
1. {(−15, 4), (−18, −8), (−16.5, −2),
Step-by-step explanation:
ZX + Zz = 180°, without the actual
measu
Answer:
Step-by-step explanation:
x²-16x+60
=x²-6x-10x+60
=x(x-6)-10(x-6)
=(x-6)(x-10)
so dimensions are x-6 and x-10.