Answer:
the answer would be 2/5
Step-by-step explanation:
you add up all of the boys to get 8
there are, in total 20 students that can be chosen, so there is an 8/20 chance that it would be a boy, simplified that is 2/5
I think transition, reflection, transition, and reflection.
According to the use of binomial expansion, the approximate value of √3 is found by applying the infinite sum √3 = 1 + (1 /2) · 2 - (1 / 8) · 2² + (1 / 16) · 2³ - (5 / 128) · 2⁴ + (7 / 256) · 2⁵ - (21 / 1024) · 2⁶ + (33 / 2048) · 2⁷ - (429 / 32768) · 2⁸ +...
An acceptable result cannot be found manually for it requires a <em>high</em> number of elements, with the help of a solver we find that the <em>approximate</em> value of √3 is 1.732.
<h3>How to approximate the value of a irrational number by binomial theorem</h3>
Binomial theorem offers a formula to find the <em>analytical</em> form of the power of a binomial of the form (a + b)ⁿ:
(1)
Where:
- a, b - Constants of the binomial.
- n - Grade of the power binomial.
- k - Index of the k-th element of the power binomial.
If we know that a = 1, b = 2 and n = 1 / 2, then an approximate expression for the square root is:
√3 = 1 + (1 /2) · 2 - (1 / 8) · 2² + (1 / 16) · 2³ - (5 / 128) · 2⁴ + (7 / 256) · 2⁵ - (21 / 1024) · 2⁶ + (33 / 2048) · 2⁷ - (429 / 32768) · 2⁸ +...
To learn more on binomial expansions: brainly.com/question/12249986
#SPJ1
The total length of the circle is calculated by the following formula:
Lenght = 2.π.r
As r = 4c
Then,
Lenght = 2.π.4
Lenght = 8π centimetrs
Now use the rule of 3
But we have to know:
...<..> ...
Then,
8π ________ 2π <= 360°
x ________ 3π
2π . x = 8π . 3π
x = (8π . 3π) / 2π
x = (8 . 3π)/ 2
x = 12π centimenters
x ~ 37,69 c
1-2. The best estimate for the population mean would be sample mean of 60 gallons. Since we know that the sample mean is the best point of estimate. Since sample size n=16 is less than 25, we use the t distribution. Assume population from normal distribution.
3. Given a=0.1, the t (0.05, df = n – 1 = 15)=1.75
4. xbar ± t*s/vn = 60 ± 1.75*20/4 = ( 51.25, 68.75)
5. Since the interval include 63, it is reasonable.