Answer:
Reflection over the x-axis
Step-by-step explanation:
The transformation rule for a reflection over the x-axis is (x, -y)
I really dont understant your question. but you are right that negative 8 that it would be minus. <span>In </span>mathematics<span>, a </span>negative<span> number is a real number that is less than zero. </span>Negative<span> numbers represent opposites. If positive represents movement to the right, </span>negative<span> represents movement to the left.</span>
Answer is <span>C. 80
hope that helps
75% are full with 20 seats empty so </span>20 seats empty = 25%
75% * 20 / 25% = 60
Zeros do not count as a sigfig so when you do something like this problem just include the numbers until you hit your significant figure limit and then substitute zeros where you can. 20000
Answer:
<h2>hwvveje
<em><u>d</u></em><em><u>b</u></em><em><u>f</u></em><em><u>b</u></em><em><u>j</u></em><em><u>x</u></em><em><u>j</u></em><em><u>j</u></em><em><u>d</u></em><em><u>j</u></em><em><u>d</u></em><em><u>b</u></em><em><u>b</u></em><em><u>s</u></em><em><u>v</u></em><em><u>s</u></em><em><u>v</u></em><em><u>h</u></em><em><u>s</u></em><em><u>j</u></em><em><u>w</u></em><em><u>w</u></em><em><u>j</u></em><em><u>j</u></em><em><u>w</u></em><em><u>k</u></em><em><u>k</u></em><em><u>w</u></em><em><u>i</u></em><em><u>i</u></em><em><u>w</u></em><em><u>j</u></em><em><u>d</u></em><em><u>j</u></em><em><u>d</u></em><em><u>b</u></em><em><u>b</u></em><em><u>d</u></em><em><u>b</u></em><em><u>x</u></em><em><u>b</u></em><em><u>b</u></em><em><u>x</u></em><em><u>j</u></em><em><u>e</u></em></h2>
Step-by-step explanation:
<h2>vshkeeheyeu4us d rvrgs
<em><u>j</u></em><em><u>h</u></em><em><u>d</u></em><em><u>h</u></em><em><u>f</u></em><em><u>h</u></em><em><u>x</u></em><em><u>d</u></em><em><u>b</u></em><em><u>e</u></em><em><u>v</u></em><em><u>d</u></em><em><u>v</u></em><em><u>d</u></em><em><u>h</u></em><em><u>j</u></em><em><u>e</u></em><em><u>f</u></em><em><u> </u></em><em><u>z</u></em><em><u>b</u></em><em><u>f</u></em><em><u>j</u></em><em><u>f</u></em><em><u>k</u></em></h2>