The acceleration is defined by force divided by the mass of the object. So, When the smaller object is hit by a small force, it can produce equal acceleration which is same as that of the bigger body hit with large force.
<h3><u>Explanation:</u></h3>
Force is defined as the product of the mass of the body its applied to and the acceleration of the body in the direction of the force. So acceleration is force divided by the mass of the body.
Let the mass of the smaller body be m and that of the larger body be M.
The smaller force applied on the smaller body be f and the larger force applied on the larger body be F.
So acceleration of the larger body = F/M.
Acceleration of the smaller body = f/m.
For the accelerations to be same,
F/M = f/m.
Or F/f = M/m.
So when the ratio of the force applied on two bodies is in ratio of their masses, the acceleration becomes equal.
The characteristics of the α and β particles allow to find the design of an experiment to measure the ²³⁴Th particles is:
-
On a screen, measure the emission as a function of distance and when the value reaches a constant, there is the beta particle emission from ²³⁴Th.
- The neutrons cannot be detected in this experiment because they have no electrical charge.
In Rutherford's experiment, the positive particles directed to the gold film were measured on a phosphorescent screen that with each arriving particle a luminous point is seen.
The particles in this experiment are α particles that have two positive charge and two no charged is a helium nucleus.
The test that can be carried out is to place a small ours of Thorium in front of a phosphorescent screen and see if it has flashes, with the amount of them we can determine the amount of particle emitted per unit of time.
Thorium has several isotopes, with different rates and types of emission:
- ²³²Th emits α particles, it is the most abundant 99.9%
- ²³⁴Th emits β particles, exists in small traces.
In this case they indicate that the material used is ²³⁴Th, which emits β particles that are electrons, the detection of these particles is more difficult since it has one negative charge, it has much lower mass, but they can travel further than the particles α, therefore, for what type of isotope we have, we can start measuring at a small distance and increase the distance until the reading is constant. At this point all the particles that arrive are β, which correspond to ²³⁴Th.
Neutron detection is much more difficult since these particles have no charge and therefore do not interact with electrons and no flashing on the screen is varied.
In conclusion with the characteristics of the α and β particles we can find the design of an experiment to measure the ²³⁴Th particles is:
-
On a screen, measure the emission as a function of distance and when the value reaches a constant, there is the β particle emission from ²³⁴Th.
- The neutrons cannot be detected in this experiment because they have no electrical charge.
Learn more about radioactive emission here: brainly.com/question/15176980
Answer:
Ag+ = 47 electrons - 1 electron = 46 electrons. Finally: 47 protons , 61 neutrons and 46 electrons.
Explanation:
Answer:
Option 4. 14.8 g
Explanation:
3NO2 + H2O → 2HNO3 + NO
First let us calculate the molar mass of NO2 and NO. This is illustrated below;
Molar Mass of NO2 = 14 + (2x16) = 14 + 32 = 46g/mol
Mass of NO2 from the question = 3 x 46 = 138g.
Molar Mass of NO = 14 +16 = 30g/mol
From the equation,
138g of NO2 reacted to produce 30g of NO
Therefore, 68.2g of NO2 will react to produce = (68.2 x 30)/138 = 14.8g of NO.
From the mole ratio of the reaction as given in the equation of the reaction, the mass of calcium chloride that can be produced from 5.59 mol of hydrochloric acid is 310.245 g.
<h3>What mass of calcium chloride can be produced from 5.59 mol of hydrochloric acid?</h3>
The mass of calcium chloride that can be produced from 5.59 mol of hydrochloric acid is determined from the equation of the reaction.
The equation of the reaction is given below:
Ca²⁺ (aq) + 2 HCl (aq) ---> CaCl₂ (s) + H₂ (g)
From the equation of the reaction, the mole ratio of HCL and calcium chloride is 2 : 1
Therefore, moles of calcium chloride that can be produced will be:
The moles of calcium chloride = 5.59 moles * 1/2
The moles of calcium chloride = 2.795 moles
The mass of calcium chloride produced = moles * molar mass
Molar mass of calcium chloride = 111 g/mol
Mass of calcium chloride produced = 2.795 * 111
Mass of calcium chloride produced = 310.245 g
Learn more about mole ratio at: brainly.com/question/19099163
#SPJ1