During a total solar eclipse, the moon passes between Earth and the sun. This completely blocks out the sun’s light. However, the moon is about 400 times smaller than the sun. How can it block all of that light?
Answer:

Explanation:
The magnitude of the net force exerted on q is known, we have the values and positions for
and q. So, making use of coulomb's law, we can calculate the magnitude of the force exerted by
on q. Then we can know the magnitude of the force exerted by
about q, finally this will allow us to know the magnitude of 
exerts a force on q in +y direction, and
exerts a force on q in -y direction.

The net force on q is:

Rewriting for
:

Answer:
simple machines such as ramps lessen the moment required to do work. if a triangle has a base of 5 and the height is 7, a ramp would make the hypotenuse of this triangle lessoning the total distance. using a²+b²=c² 25+49=c² 74≈8.6 and it is obvious that 8.6 is less than 12 in every unit. other simple machines such as pulleys make it lighter making it simply easier for an object to be lifted.
Explanation: