1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gemiola [76]
3 years ago
10

calculate the time rate of change in air density during expiration. Assume that the lung has a total volume of 6000mL, the diame

ter of the trachea is 18mm, the air flow velocity out of the trachea is 20cm/s and the density of air is 1.225kg/m3. Also assume that lung volume is decreasing at a rate of 100mL/s.
Physics
2 answers:
inessss [21]3 years ago
8 0

Answer:

Time rate = 0.010026 kg/m³.s

Explanation:

We are given the following;

Total lung capacity; V = 6000mL = 6 x 10^(-3) m³

diameter of the trachea is 18mm = 0.018m

Air density; ρ = 1.225kg/m³

Velocity; v = 20cm/s = 0.20m/s

From the question, lung volume is decreasing at a rate of 100mL/s.

Thus, dv /dt = -100mL = -0.0001 m³/s

Area of trachea; A = πD²/4

A = (π x 0.018²)/4 = 2.5447 x 10^(-4) m²

Now, let's set up the equation.

-ρAv = (d/dt)(ρV) = V(dρ/dt) + ρ(dv/dt)

Thus,

Plugging in the relevant values to get;

-[1.225 x 2.5447 x 10^(-4) x 0.20] = 6 x 10^(-3)(dρ/dt) + (1.225 x -0.0001)

So,

-0.62345 x 10^(-4) = 6x10^(-3)(dρ/dt) - (1.225 x 10^(-4))

6x10^(-3)(dρ/dt) = (1.225 x 10^(-4)) - 0.62345 x 10^(-4)

6x10^(-3)(dρ/dt) = 0.60155 x 10^(-4)

(dρ/dt) = [0.60155 x 10^(-4)] /(6x10^(-3)) = 0.10026 x 10^(-1) = 0.010026 kg/m³.s

ρ

kipiarov [429]3 years ago
3 0

Answer:

The time rate of change in air density during expiration is 0.01003kg/m³-s

Explanation:

Given that,

Lung total capacity V = 6000mL = 6 × 10⁻³m³

Air density p = 1.225kg/m³

diameter of the trachea is 18mm = 0.018m

Velocity v = 20cm/s = 0.20m/s

dv /dt = -100mL/s (volume rate decrease)

= 10⁻⁴m³/s

Area for trachea =

\frac{\pi }{4} d^2\\= 0.785\times 0.018^2\\= 2.5434 \times10^-^4m^2

0 - p × Area for trachea =

\frac{d}{dt} (pv)=v\frac{ds}{dt} + p\frac{dv}{dt}

-1.225\times2.5434\times10^-^4\times0.20=6\times10^-^3\frac{ds}{dt} +1.225(-1\times10^-^4)

-1.225\times2.5434\times10^-^4\times0.20=6\times10^-^3\frac{ds}{dt} +1.225(-1\times10^-^4)

⇒-0.623133\times10^-^4+1.225\times10^-^4=6\times10^-^3\frac{ds}{dt}

           \frac{ds}{dt} = \frac{0.6018\times10^-^4}{6\times10^-^3} \\\\= 0.01003kg/m^3-s

ds/dt = 0.01003kg/m³-s

Thus, the time rate of change in air density during expiration is 0.01003kg/m³-s

You might be interested in
NEED HELP Two skaters stand facing each other. One skater’s mass is 60 kg, and the other’s mass is 72 kg. If the skaters push aw
stealth61 [152]

Answer:

the heavier skater has less momentum

hope it is helpful to you

3 0
3 years ago
Read 2 more answers
A 76-W incandescent light bulb operates at 120 V. How many electrons and coulombs flow through the bulb in one day?
Tema [17]

Answer:

43200c

Explanation:

7 0
3 years ago
A 6.8 kg bowling ball and 7.4 kg bowling ball rest on a rack 0.74 m apart. What is the force of gravity pulling each ball toward
zimovet [89]

The gravitational force between the two balls is 6.13\cdot 10^{-9} N

Explanation:

The magnitude of the gravitational force between two objects is given by:

F=G\frac{m_1 m_2}{r^2}

where :

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

m1, m2 are the masses of the two objects

r is the separation between the objects

For the balls in this problem,  we have

m_1 = 6.8 kg

m_2 = 7.4 kg

r = 0.74 m

Substituting into the equation, we find the gravitational force between the two balls:

F=(6.67\cdot 10^{-11})\frac{(6.8)(7.4)}{(0.74)^2}=6.13\cdot 10^{-9}N

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

4 0
3 years ago
A ball is thrown vertically upward, which is the positive direction. A little later, it returns to its point of release. The bal
Aleks [24]

Answer:

The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>

Explanation:

Given:

Upward direction is positive. So, downward direction is negative.

Tota time the ball remains in air (t) = 8.0 s

Net displacement of the ball (S) = Final position - Initial position = 0 m

Acceleration of the ball is due to gravity. So, a=g=-9.8\ m/s^2(Acting down)

Now, let the initial velocity be 'u' m/s.

From Newton's equation of motion, we have:

S=ut+\frac{1}{2}at^2

Plug in the given values and solve for 'u'. This gives,

0=8u-0.5\times 9.8\times 8^2\\\\8u=4.9\times 64\\\\u=\frac{4.9\times 64}{8}\\\\u=4.9\times 8=39.2\ m/s

Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.

3 0
3 years ago
What do all hydrogen atoms and ions have in common?
Leokris [45]
They have the same Number of protons
3 0
2 years ago
Other questions:
  • What precautions should be taken on board a vessel during a lightning storm?
    6·2 answers
  • Most of the compunds that make up organisms contain __
    9·1 answer
  • Newton's second law of motion is also known as the law of.......
    10·1 answer
  • A car moving with an initial speed v collides with a second stationary car that is one-half as massive. After the collision the
    7·1 answer
  • Where do you find cations on the periodic table
    5·1 answer
  • If the effects of heat and friction are ignored, the amount of work output is always _______ the amount of work input, even when
    7·1 answer
  • CAN YOU EXPLAIN?
    12·1 answer
  • Would you expect to weigh more on an ocean beach or on top of a mountain? Explain.
    5·1 answer
  • Planetesmals are made from
    9·1 answer
  • Lets see how many go her just for the money
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!