1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gemiola [76]
3 years ago
10

calculate the time rate of change in air density during expiration. Assume that the lung has a total volume of 6000mL, the diame

ter of the trachea is 18mm, the air flow velocity out of the trachea is 20cm/s and the density of air is 1.225kg/m3. Also assume that lung volume is decreasing at a rate of 100mL/s.
Physics
2 answers:
inessss [21]3 years ago
8 0

Answer:

Time rate = 0.010026 kg/m³.s

Explanation:

We are given the following;

Total lung capacity; V = 6000mL = 6 x 10^(-3) m³

diameter of the trachea is 18mm = 0.018m

Air density; ρ = 1.225kg/m³

Velocity; v = 20cm/s = 0.20m/s

From the question, lung volume is decreasing at a rate of 100mL/s.

Thus, dv /dt = -100mL = -0.0001 m³/s

Area of trachea; A = πD²/4

A = (π x 0.018²)/4 = 2.5447 x 10^(-4) m²

Now, let's set up the equation.

-ρAv = (d/dt)(ρV) = V(dρ/dt) + ρ(dv/dt)

Thus,

Plugging in the relevant values to get;

-[1.225 x 2.5447 x 10^(-4) x 0.20] = 6 x 10^(-3)(dρ/dt) + (1.225 x -0.0001)

So,

-0.62345 x 10^(-4) = 6x10^(-3)(dρ/dt) - (1.225 x 10^(-4))

6x10^(-3)(dρ/dt) = (1.225 x 10^(-4)) - 0.62345 x 10^(-4)

6x10^(-3)(dρ/dt) = 0.60155 x 10^(-4)

(dρ/dt) = [0.60155 x 10^(-4)] /(6x10^(-3)) = 0.10026 x 10^(-1) = 0.010026 kg/m³.s

ρ

kipiarov [429]3 years ago
3 0

Answer:

The time rate of change in air density during expiration is 0.01003kg/m³-s

Explanation:

Given that,

Lung total capacity V = 6000mL = 6 × 10⁻³m³

Air density p = 1.225kg/m³

diameter of the trachea is 18mm = 0.018m

Velocity v = 20cm/s = 0.20m/s

dv /dt = -100mL/s (volume rate decrease)

= 10⁻⁴m³/s

Area for trachea =

\frac{\pi }{4} d^2\\= 0.785\times 0.018^2\\= 2.5434 \times10^-^4m^2

0 - p × Area for trachea =

\frac{d}{dt} (pv)=v\frac{ds}{dt} + p\frac{dv}{dt}

-1.225\times2.5434\times10^-^4\times0.20=6\times10^-^3\frac{ds}{dt} +1.225(-1\times10^-^4)

-1.225\times2.5434\times10^-^4\times0.20=6\times10^-^3\frac{ds}{dt} +1.225(-1\times10^-^4)

⇒-0.623133\times10^-^4+1.225\times10^-^4=6\times10^-^3\frac{ds}{dt}

           \frac{ds}{dt} = \frac{0.6018\times10^-^4}{6\times10^-^3} \\\\= 0.01003kg/m^3-s

ds/dt = 0.01003kg/m³-s

Thus, the time rate of change in air density during expiration is 0.01003kg/m³-s

You might be interested in
Jeff is investigating factors that affect the growth rate of potted bean plants. Which of the following experimental variables w
Kipish [7]
It would be C. the color of the pot. its pretty obvious that i would not effect the project.

8 0
3 years ago
Read 2 more answers
A particle moves in a straight line with the velocity function v ( t ) = sin ( w t ) cos 3 ( w t ) . find its position function
Sunny_sXe [5.5K]

Integrating the velocity equation, we will see that the position equation is:

$f(t)=\frac{\cos ^3(\omega t)-1}{3}

<h3>How to get the position equation of the particle?</h3>

Let the velocity of the particle is:

$v(t)=\sin (\omega t) * \cos ^2(\omega t)

To get the position equation we just need to integrate the above equation:

$f(t)=\int \sin (\omega t) * \cos ^2(\omega t) d t

$\mathrm{u}=\cos (\omega \mathrm{t})

Then:

$d u=-\sin (\omega t) d t

\Rightarrow d t=-d u / \sin (\omega t)

Replacing that in our integral we get:

$\int \sin (\omega t) * \cos ^2(\omega t) d t$

$-\int \frac{\sin (\omega t) * u^2 d u}{\sin (\omega t)}-\int u^2 d t=-\frac{u^3}{3}+c$

Where C is a constant of integration.

Now we remember that $u=\cos (\omega t)$

Then we have:

$f(t)=\frac{\cos ^3(\omega t)}{3}+C

To find the value of C, we use the fact that f(0) = 0.

$f(t)=\frac{\cos ^3(\omega * 0)}{3}+C=\frac{1}{3}+C=0

C = -1 / 3

Then the position function is:

$f(t)=\frac{\cos ^3(\omega t)-1}{3}

Integrating the velocity equation, we will see that the position equation is:

$f(t)=\frac{\cos ^3(\omega t)-1}{3}

To learn more about motion equations, refer to:

brainly.com/question/19365526

#SPJ4

4 0
1 year ago
Name some of the mediums that sound can travel through
Brums [2.3K]

Answer:

gas, liquid, and solid

Explanation:

6 0
2 years ago
Read 2 more answers
When sedimentary rock is exposed to heat and pressure, what does it change into?
patriot [66]
Metamorphic rock this possess often occurs in the mantle
7 0
3 years ago
A solid circular disk has a mass of 1.2 kg and a radius of 0.16m. Each of three identical thin rods has a mass of 0.16kg. The ro
Juli2301 [7.4K]

Answer:

0.027648 kgm²

Explanation:

M = Mass of disc = 1.2 kg

r = Radius of disc = 0.16 m

m = Mass of rod = 0.16 kg

R = Rod distance = 0.16 m

Moment of inertia of disk is given by

I_1=\dfrac{1}{2}Mr^2\\\Rightarrow I_1=\dfrac{1}{2}1.2\times 0.16^2\\\Rightarrow I_1=0.01536\ kgm^2

Moment of inertia of the three rods

I_2=3mr^2\\\Rightarrow I_2=3\times 0.16\times 0.16^2\\\Rightarrow I_2=0.012288\ kgm^2

The total moment of inertia is given by

I=I_1+I_2=0.01536+0.012288\\\Rightarrow I=0.027648\ kgm^2

The moment of inertia of the stool with respect to an axis that is perpendicular to the plane of the disk at its center is 0.027648 kgm²

8 0
3 years ago
Other questions:
  • How do i do about how to do the doing of how about how the logic of the person below me is bad but actually isnt bad because the
    10·2 answers
  • Please need some help on this
    6·1 answer
  • QUICK
    14·1 answer
  • Erica (38 kgkg ) and Danny (46 kgkg ) are bouncing on a trampoline. Just as Erica reaches the high point of her bounce, Danny is
    8·1 answer
  • 4. The bar has cross-sectional area A and modulus of elasticity E. If an axial force F directed toward the right is applied at C
    6·1 answer
  • Microwelds are formed where
    8·2 answers
  • Two technicians are discussing headlights. Technician A says that the electricity creates electromagnetic energy in the filament
    6·1 answer
  • Why does sound propagate faster in solid bodies than in liquids and faster in liquids than in air?
    14·1 answer
  • Which equation represents a neutralization reaction?
    12·1 answer
  • NaCl solid is an example of a/an<br> A. Insulator<br> B. Conductor<br> OC. Nonmetal<br> D. Metalloid
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!