Answer:
Explanation:
First of all we shall find the velocity at equilibrium point of mass 1.2 kg .
It will be ω A , where ω is angular frequency and A is amplitude .
ω = √ ( k / m )
= √ (170 / 1.2 )
= 11.90 rad /s
amplitude A = .045 m
velocity at middle point ( maximum velocity ) = 11.9 x .045 m /s
= .5355 m /s
At middle point , no force acts so we can apply law of conservation of momentum
m₁ v₁ = ( m₁ + m₂ ) v
1.2 x .5355 = ( 1.2 + .48 ) x v
v = .3825 m /s
= 38.25 cm /s
Let new amplitude be A₁ .
1/2 m v² = 1/2 k A₁²
( 1.2 + .48 ) x v² = 170 x A₁²
( 1.2 + .48 ) x .3825² = 170 x A₁²
A₁ = .0379 m
New amplitude is .0379 m
Explanation:
12) q = mCΔT
125,600 J = (500 g) (4.184 J/g/K) (T − 22°C)
T = 82.0°C
13) Solving for ΔT:
ΔT = q / (mC)
a) ΔT = 1 kJ / (0.4 kg × 0.45 kJ/kg/K) = 5.56°C
b) ΔT = 2 kJ / (0.4 kg × 0.45 kJ/kg/K) = 11.1°C
c) ΔT = 2 kJ / (0.8 kg × 0.45 kJ/kg/K) = 5.56°C
d) ΔT = 1 kJ / (0.4 kg × 0.90 kJ/kg/K) = 2.78°C
e) ΔT = 2 kJ / (0.4 kg × 0.90 kJ/kg/K) = 5.56°C
f) ΔT = 2 kJ / (0.8 kg × 0.90 kJ/kg/K) = 2.78°C
14) q = mCΔT
q = (2000 mL × 1 g/mL) (4.184 J/g/K) (80°C − 20°C)
q = 502,000 J
20) q = mCΔT
q = (2000 g) (4.184 J/g/K) (100°C − 15°C) + (400 g) (0.9 J/g/K) (100°C − 15°C)
q = 742,000 J
24) q = mCΔT
q = (0.10 g) (0.14 J/g/K) (8.5°C − 15°C)
q = -0.091 J