Answer:
The period 4 alkaline-earth metal has the name Calcium. An isotope of this element having 20 neutrons has a mass number of 40.
Explanation:
Looking at the periodic table 4th row for the alkaline-earth metal, we can find Calcium which has an atomic number of 20 (or protons number, or z). The mass number is given by the sum of protons and neutrons. If the number of protons in this case is 20 and the number of neutrons is also 20, the mass number A = 40.
Water molecules move througout the solute
The head of a matchstick has a great deal of chemical energy stored in it, including combustible substances that produce a flame when rubbed against a suitable surface. ... As the combustible materials burn, some of the chemical energy is transformed into heat energy, and some is transformed into light energy. Hope this helps
Answer:
pH = 1.32
Explanation:
H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺
This problem involves a weak diprotic acid which we can solve by realizing they amount to buffer solutions. In the first deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:
So first calculate the moles reacted and produced:
n H₂M = 0.864 g/mol x 1 mol/ 116.072 g = 0.074 mol H₂M
54 mL x 1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH
it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.
moles H₂M left = 0.074 - 0.015 = 0.059
moles HM⁻ produced = 0.015
Using the Henderson - Hasselbach equation to solve for pH:
ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325
Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.
For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.
Kinetic energy remains conserved in an elastic collision.