1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PSYCHO15rus [73]
2 years ago
15

Here are the lowest temperatures

Mathematics
1 answer:
Masteriza [31]2 years ago
6 0
The answer is (-0.7)
You might be interested in
HEL ME PLEEAASSEE AMIGO PLEEAASSEE or amiga
podryga [215]

Answer:

159 degrees

Step-by-step explanation:

A full semicircle (or half circle) has a degrees of 180. And x is equal that semicircle so x = 180, now if we subtract 21 from 180 we get 159, so X = 159.

7 0
2 years ago
Solve for c.<br> 55c+13 &lt; 750 +39
iren [92.7K]

Answer:

c = anything less than 14.1

Step-by-step explanation:

55c+13 < 750 + 39

55c+13 < 789

55c < 776

c < 14.1

Hope It Helps

5 0
2 years ago
Read 2 more answers
17.The diameter of a circle has endpoints P(–7, –10) and Q(3, 2).
ser-zykov [4K]
A.) (-2,-4)
(7+3)/2=5, (10+2)/2=6
(-7+5,-10+6)
(-2,-4)
b.)r^2=244
10^2+12^2=244
r=2(61)^(1/2)
c.)(x+2)^2+(y+4)^2=244
7 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
2 years ago
Read 2 more answers
A team of bakers can roll and form 5 dozen pretzels in 9 minutes. How many pretzels can this team form in 1 hour?
tino4ka555 [31]
The answer should be 3600

8 0
3 years ago
Other questions:
  • PLEASE EXPLAIN ANSWER<br> look at the picture
    5·2 answers
  • The diagonals of a convex quadrilateral are mutually perpendicular. The sum of the lengths of the diagonals is 12. We want to fi
    9·1 answer
  • Tammy spent $250 on a new coffee table and $148 a new rug.She gave the clerk $500.How much change did she receive?
    7·2 answers
  • Find the missing dividend ÷4.30=8.60​
    10·2 answers
  • Using Pemdas what’s is the solution?
    5·2 answers
  • HELP PLEASE
    11·1 answer
  • If a regular polygon has 72 sides and an order of 72,what is the polygon’s rotational angle?
    6·1 answer
  • Quizziz 9th grade help please
    5·2 answers
  • Plz help ASAP!!!!!
    8·1 answer
  • As the guest was sneaking away, the grounds keeper was 4 feet(48 inches) away and pushed an 84 inch ladder onto the suspect. The
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!