Answer:
140°
Step-by-step explanation:
The sum of angle of a triangle is equal to 180°.
Two of the angles measured 20°.
We need to find the measure of the third angle of Nora’s triangle. let the third angle is x. So,
20+20+x = 180
40+x = 180
x = 180-40
x = 140°
So, the third angle of the triangle is 140°.
25,678 rounded to the nearest 10,000 would be 30,000
The equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
<h3>How to determine the functions?</h3>
A quadratic function is represented as:
y = a(x - h)^2 + k
<u>Question #6</u>
The vertex of the graph is
(h, k) = (-1, 2)
So, we have:
y = a(x + 1)^2 + 2
The graph pass through the f(0) = -2
So, we have:
-2 = a(0 + 1)^2 + 2
Evaluate the like terms
a = -4
Substitute a = -4 in y = a(x + 1)^2 + 2
y = -4(x + 1)^2 + 2
<u>Question #7</u>
The vertex of the graph is
(h, k) = (2, 1)
So, we have:
y = a(x - 2)^2 + 1
The graph pass through (1, 3)
So, we have:
3 = a(1 - 2)^2 + 1
Evaluate the like terms
a = 2
Substitute a = 2 in y = a(x - 2)^2 + 1
y = 2(x - 2)^2 + 1
<u>Question #8</u>
The vertex of the graph is
(h, k) = (1, -2)
So, we have:
y = a(x - 1)^2 - 2
The graph pass through (0, -3)
So, we have:
-3 = a(0 - 1)^2 - 2
Evaluate the like terms
a = -1
Substitute a = -1 in y = a(x - 1)^2 - 2
y = -(x - 1)^2 - 2
Hence, the equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
Read more about parabola at:
brainly.com/question/1480401
#SPJ1
476.00×5%=23.80 tax=476+23.80=499.80
499.80×15%=74.97
499.80+74.97=574.77
The intervals are given as follows:
- In range notation: [-282, 20,320].
- In set-builder notation: {x|x ∈ ℝ, -282 <= x <= 20,320}
<h3>What is the range of elements notation for interval?</h3>
The range of elements notation for interval is given by:
[a,b].
In which:
In this problem these values are given by:
a = -282, b = 20,320.
Hence the interval in range notation is given by:
[-282, 20,320].
<h3>How to write the interval in set-builder notation?</h3>
The same interval can be written as follows, using set-builder notation?
{x|x ∈ ℝ, a <= x <= b}
Hence, for the situation described in this problem, the set-builder notation for the values is:
{x|x ∈ ℝ, -282 <= x <= 20,320}
More can be learned about notation of intervals at brainly.com/question/27896097
#SPJ1