Answer:
- Perimeter = 22*sqrt(2)
- Area = 60.5 inches
- D 
Step-by-step explanation:
Remark
You need 2 facts.
- A square has 4 equal sides. 
- It contains (by definition) 1 right angle but since we are not including and statement about parallel sides, it needs 4 right angles.
That means you can use the Pythagorean Theorem.
If one side of a square is a then the 1 after it is a as well.
Formula
- a^2 + a^2 = c^2
- 2a^2 = c^2
Givens
Solution
- 2a^2 = 11^2
- 2a^2 = 121                    Divide by 2
- a^2 = 121/2                  Take the square root of both sides
- sqrt(a^2) = sqr(121/2)    
- a = 11/sqrt(2)                Rationalize the denominator
- a = 11 * sqrt(2)/[sqrt(2) * sqrt(2)]
- a = 11 * sqrt(2) / 2
<em><u>Perimeter</u></em>
P = 4s
- P = 4*11*sqrt(2)/2
- P = 44*sqrt(2)/2
- P = 22*sqrt(2)
You don't need the area. The answer is D
<em><u>Area</u></em>
- Area = s^2
- Area = (11*sqrt(2)/2 ) ^2
- Area = 121 * 2 / 4
- Area = 60.5
 
        
             
        
        
        
Answer:
C..... I think it is a answer 
 
        
             
        
        
        
Since you keep proportional dimensions, the proportion between the old and new dimensions must be the same. So, if we call the new height  , the preservation of the width/height ratio is written as
, the preservation of the width/height ratio is written as

Solving the proportion for  yields
 yields

 
        
                    
             
        
        
        
Answer:
M∠DEC equals 123º.
Step-by-step explanation:
The sum of a triangle's three angles always equal 180º. The exterior angle, x, equals the two non-adjacent interior angles.
180 - {(x - 45)+(x - 12)} = m∠DEC
m∠DEC + x = 180
<u>(x - 45) + (x - 12) = x</u>
Solving for x:
(x - 45) + (x - 12) = x
x - 45 + x - 12 = x                             Remove parenthesis
2x - 57 = x                                       Combine like terms
2x = x + 57                                      Add 57 to both sides
<u>x = 57</u><u>                                             Subtract x from both sides</u>
Finding m∠D:
x - 45 = ?
<u>57 - 45 = </u><u>12º                                          </u>
Finding m∠C:
x - 12 = ?
<u>57 - 12 = </u><u>45º                                           </u>
<em>** </em><em>(Checking x: 12 + 45 = 57) </em><em>**</em>
<em>Finding </em>m∠DEC:
AC is a straight line, and because straight lines are equivalent to 180º, we subtract 57 from 180:
180 - 57 = 123º
Hope this helps,
❤<em>A.W.E.</em><u><em>S.W.A.N.</em></u>❤