Using a table of values, the outputs of f(x) for whole numbers are 0, 1, 4, 9, 16, 25, 36, and so on. For the same input values, g(x) has outputs of 1, 2, 4, 8, 16, 32, and 64. Continuing to double the output each time results in larger outputs than those of f(x). The exponential function, g(x), has a constant multiplicative rate of change and will increase at a faster rate than the quadratic function.
(ed. just click all of them)
Answer:
44, 46, and 48
Step-by-step explanation:
add them and you should get 138.
Answer:
C is the most reasonable answer because to add the system of equations together, you must make sure that one of the terms (whether it be the x or y value) can cancel out.
Step-by-step explanation:
Answer:
1 false
2 true
3 true
4 false
5 true
Step-by-step explanation:
f(a) = (2a - 7 + a^2) and g(a) = (5 – a).
1 false f(a) is a second degree polynomial and g(a) is a first degree polynomial
When added together, they will be a second degree polynomial
2. true When we add and subtract polynomials, we still get a polynomial, so it is closed under addition and subtraction
3. true f(a) + g(a) = (2a - 7 + a^2) + (5 – a)
Combining like terms = a^2 +a -2
4. false f(a) - g(a) = (2a - 7 + a^2) - (5 – a)
Distributing the minus sign (2a - 7 + a^2) - 5 + a
Combining like terms a^2 +3a -12
5. true f(a)* g(a) = (2a - 7 + a^2) (5 – a).
Distribute
(2a - 7 + a^2) (5) – (2a - 7 + a^2) (a)
10a -35a +5a^2 -2a^2 -7a +a^3
Combining like term
-a^3 + 3 a^2 + 17 a - 35
If you draw a rectangle divided up into eight even parts, and label them each as 1/8, then you can show your work for how you double it. You do this by "coloring" one in, and then doing the same for a second piece (but color that one in a different way). You can visually double an eighth in that way.
Or, you can simply multiply by 2 to double 1/8:
1/8x2/1=2/8