Answer:

Explanation:
Hello,
In this case, we can solve this problem by noticing that the heat lost by the warm water is gained by the ice in order to melt it:

In such a way, the cooling of water corresponds to specific heat and the melting of ice to sensible heat and specific heat also that could be represented as follows:

Thus, specific heat of water is 4.18 J/g°C, heat of melting is 334 J/g and specific heat of ice is 2.04 J/g°C, thus, we can compute the final temperature as shown below:

Best regards.
3.25 kg in g = 3.25 * 1000 = 3250 g
Molar mass C₂H₆O₂ = 62.0 g/mol
Mass solvent = 7.75 kg
Number of moles:
n = mass solute / molar mass
n = 3250 / 62.0
n = 52.419 moles
Molality = moles of solute / kilograms of solvent
M = 52.419 / 7.75
M = 6.7637 mol/kg
hope this helps!
Answer:
Here, we are required to determine the total energy of the reaction and determine if the reaction is an endothermic or exothermic reaction.
The correct answer is option C.
First, we need to determine the energy of the reaction.
The energy of the reaction is the change in enthalpy between the product and reactants.
Change of Enthalpy,
Hreaction = Hproduct - Hreactant.
Therefore, for the reaction above, the change in enthalpy is:
Hreaction = 590kJ/mol - 581kJ/mol.
Hreaction = 9kJ/mol.
Hence, since the reaction has an enthalpy change of 9kJ/mol, the reaction is endothermic (i.e energy is absorbed).
Explanation:
Atomic number The atomic number of each element is different than other Elements.
The factor that is generally responsible for higher melting point is intermolecular forces. The compounds that are covalent in nature are made of molecules rather than ions. It has been seen that some of the covalent compounds have polar molecules at one end, due to which the one end has more electronegative force than the other. The electrostatic force that is bounding the compound is the main cause of higher melting point of this compound. So it is true that with the increase of polarity of a compound creates higher melting point. .. hope I helped