The answer is color as the least reliable
<u>Answer:</u>
NO ---> N +2 and O -2
<u>Explanation:</u>
Oxidation numbers are assigned to the elements of a compound to keep a track of the number of electrons each atom has.
Here we have a compound NO (Nitrogen Oxide). The Nitrogen is assigned an oxidation number of +2 while Oxygen in this compound is assigned an oxidation number of -2.
So the algebraic sum of the oxidation numbers of the elements in the compound NO is equal to zero.
In carbohydrates the C:H:O is 1:2:1
<u>Answer:</u> The amount of heat required to warm given amount of water is 470.9 kJ
<u>Explanation:</u>
To calculate the mass of water, we use the equation:

Density of water = 1 g/mL
Volume of water = 1.50 L = 1500 mL (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

To calculate the heat absorbed by the water, we use the equation:

where,
q = heat absorbed
m = mass of water = 1500 g
c = heat capacity of water = 4.186 J/g°C
= change in temperature = 
Putting values in above equation, we get:

Hence, the amount of heat required to warm given amount of water is 470.9 kJ
Answer:
In the kinetic molecular theory, the molecules of an ideal gas are in constant random motion inside the container of the gas, and the pressure of the gas (which is the pressure exerted by the molecules in their collisions with the walls of the container) arise from this random motion of the molecules.
The main assumptions of the kinetic theory of gases are:
- The gas consists of a large number of molecules that collide between each other and the walls of the container; all these collisions are elastic
- The duration of the collisions is negligible compared to the time between the collisions
- The number of molecules is so large that statistics can be applied
- Intermolecular forces between the molecules are negligible (except during the collisions)
- The volume of the molecules is negligible compared to the volume of the container
In particular, the pressure of the gas is directly proportional to the average kinetic energy of the molecules, according to the equation:

where
p is the pressure of the gas
V is the volume of the container
K is the average kinetic energy of the molecules in the gas
We see that as the pressure is higher, the higher the kinetic energy of the particles: this means that the molecules will move faster, on average.
Therefore in this problem, the gas that exerts a pressure of 1.5 atm will have molecules moving faster than the molecules of the gas exerting a pressure of only 1.0 atm.