<h3>Answer:</h3>
162.43 g of FeCl₂
<h3>
Explanation:</h3>
Step 1: Calculate mass of Fe;
As,
Density = Mass ÷ Volume
Or,
Mass = Density × Volume
Where Volume is the volume of water displaced = 10.4 mL
Putting values,
Mass = 7.86 g.mL⁻¹ × 10.4 mL
Mass = 81.744 g of Fe
Step 2: Calculate amount of FeCl₂;
The balance chemical equation is as follow,
Fe + 2 HCl → FeCl₂ + H₂ ↑
According to this equation,
55.85 g (1 mol) Fe produced = 110.98 g (1 mol) of FeCl₂
So,
81.744 g Fe will produce = X g of FeCl₂
Solving for X,
X = (81.744 g × 110.98 g) ÷ 55.85 g
X = 162.43 g of FeCl₂
0.0015 kilometers is for sure the answer!
<span>In June there are fewer hours of daylight and less direct sunlight in the Southern Hemisphere.
Your answer is <em>Southern Hemisphere</em><em></em>.
</span>
<h2><u>Full Question:</u></h2>
In hemoglobin, a single amino acid change at position 6 from Glu to Val has major consequences on hemoglobin structure that makes the molecule defective leading to sickle cell anemia. Predict whether the following hypothetical change would or would not have a major effect at position 6. Briefly explain (1-2 sentences). Glu to Leu Hint: Look at the structures of the R groups and consider their chemical properties
<h2><u>Answer:</u></h2>
The structure of the haemoglobin, hence the RBC won't be same as normal.
<h3><u>Explanation:</u></h3>
Both the leucine and glutamic acid are alpha amino acids which have an alpha carboxylic acid group and an alpha amino group. The variable in case of glutamic acid is propyl acid while the variable in case of leucine is isobutyl.
The glutamic acid is the normal amino acid of the 6th position of Beta chain of hemoglobin. Its an acid group, so can form bonds with another base inside the haemoglobin, or can form other hydrogen bonds. But the isobutyl group is an alkyl group. So it doesn't have that much effect in the recovering the structure, and sickle cell anemia prevails.
Answer:
Exocytosis
Explanation:
Some molecules are simply too big to move via a transport protein or the plasma membrane. To carry these macromolecules in or out of the cell, cells employ two more active transport pathways. Macromolecules or big particles are transported across the plasma membrane via Vesicles transport or other cytoplasmic structures. They are of two types, Endocytosis and Exocytosis
From the given information, Exocytosis is the right answer.
It is the process of vesicles combining with the plasma membrane thereby releasing their contents to the exterior of the cell. When a cell creates components for export, such as proteins, or when it gets rid of a waste product or a toxin, exocytosis occurs. Exocytosis is the process by which newly generated membrane proteins and membrane lipids are transported on top of the plasma membrane.