Answer:
Time take to deposit Ni is 259.02 sec.
Explanation:
Given:
Current
A
Faraday constant

Molar mass of Ni

Mass of Ni
g
First find the no. moles in Ni solution,
Moles of Ni 
mol
From the below reaction,
⇆ 
Above reaction shows "1 mol of
requires 2 mol of electron to form 1 mol of
"
So for finding charge flow in this reaction we write,

Charge flow
C
For finding time of reaction,

Where
charge flow


sec
Therefore, time take to deposit Ni is 259.02 sec.
The answer to this question would be: 2.36 mol
To answer this question, you need to know the molecular weight of copper. Molecular weight determines how much the weight of 1 mol of a molecule has. Copper molecular weight about 63.5g/mol. Then, the amount of mol in 150g copper should be: 150g / (63.5g/mol)= 2.36 mol
Answer:
the answer is distillation
A solid, a liquid or a gas.