Answer:
The difference in ionic and covalent bonding is ionic bonds take the atoms from the other atom and covalent bonding shares the atoms it needs with another atom
Answer:
The answer to your question is π = 12.47 atm
Explanation:
Data
mass of Magnesium citrate = 25.5 g
volume of solution = 244 ml
temperature = 37°C
molar mass C₆H₆MgO₇ = (12 x 6) + (1 x 6) + (24 x 1) + (16 x 7) = 214 g
Osmotic pressure = π = ?
Process
1.- Calculate the moles of magnesium citrate
214 grams ----------------- 1 mol
25.5 grams --------------- x
x = (25.5 x 1)/214
x = 0.119
2.- Calculate molarity
Molarity = moles/volume
Molarity = 0.119/0.244
Molarity = 0.49
3.- Calculate osmotic pressure
π = MRT
π = (0.49)(0.0821)(37 + 273)
π = (0.49)(0.0821)(310)
π = 12.47 atm
Hazardous materials are grouped into classes identifying their similarities in composition and structure.
<h3>Why hazardous materials are grouped into classes?</h3>
The hazardous materials are grouped into classes in order to tell us about the severity of hazard and it is done on the basis of similarity in composition.
So we can conclude that hazardous materials are grouped into classes identifying their similarities in composition and structure.
Learn more about hazardous here: brainly.com/question/7310653
Answer:
A. electrons simultaneously attracted by more than one nucleus
Explanation:
- Covalent bond is the bond which is formed with the sharing of the electrons between the two atoms which are taking part in the bond. It is generally formed between the atoms with similar electronegativity values.
- It is the bond which is generally occurs within non metals as they share electrons to complete their octet.
- The difference in the electronegativity values of the atoms involving in a covalent bond must not exceed the value of 1.7 .
Thus, the electrons are attracted by the two different nucleus of the atoms that are taking part in the bonding.
<u>So, the correct answer is:- A. electrons simultaneously attracted by more than one nucleus</u>
Optimization helps you make better choices when you have all the data, and simulation helps you understand the possible outcomes when you don’t. Frontline Solvers enable you to combine these analytic methods, so you can make better choices for decisions you do control, taking into account the range of potential outcomes for factors you don’t control.