Answer:
r-100
Step-by-step explanation:
R-100 R-100 R-100
Let us evaluate each pair of expressions one at a time.
8. (n²+4) - n² and 4n.
(n²+4) - n² = n²+ 4 - n² = 4 which is not equal to 4n.
NOT EQUIVALENT
9. 3x + 5 and 2(x + 3)
2(x + 3) = 2x + 6 which is not equal to 3x + 5.
NOT EQUIVALENT
10. 15 - 6x and 15(1 - 6x)
15(1 - 6x) = 15 - 90x which is not equal to 15 - 6x
NOT EQUVALENT
11. (y + y + 2 + y) + 3y and 6y + 2
(y +y +2 + y) + 3y = y+y+y +2 + 3y = 3y + 2 + 3y = 6y + 2.
It matches the other expression.
EQUIVALENT
12. 8y - 3 + 10y and 3(6 - 1)
8y - 3 + 10y = 8y + 10y - 3 = 18y - 3
3(6 - 1) = 3(5) = 15
The two expressions do not match.
NOT EQUIVALENT.
Answer: Only the expressions in number 11 are equivalent.
Answer:5p^3-2p^2-7p+1
Step-by-step explanation:
-3p^3+5p+(-2p^2)+(-4)-12p+5-(-8p^3)
open brackets
-3p^3+5p-2p^2-4-12p+5+8p^3
Collect like terms
-3p^3+8p^3-2p^2+5p-12p-4+5
5p^3-2p^2-7p+1
Answer:
(x,y) = (4,3)
Step-by-step explanation:
Answer:
Step-by-step explanation:
By definition of Laplace transform we have
L{f(t)} = ![L{{f(t)}}=\int_{0}^{\infty }e^{-st}f(t)dt\\\\Given\\f(t)=7t^{3}\\\\\therefore L[7t^{3}]=\int_{0}^{\infty }e^{-st}7t^{3}dt\\\\](https://tex.z-dn.net/?f=L%7B%7Bf%28t%29%7D%7D%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Df%28t%29dt%5C%5C%5C%5CGiven%5C%5Cf%28t%29%3D7t%5E%7B3%7D%5C%5C%5C%5C%5Ctherefore%20L%5B7t%5E%7B3%7D%5D%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7D7t%5E%7B3%7Ddt%5C%5C%5C%5C)
Now to solve the integral on the right hand side we shall use Integration by parts Taking
as first function thus we have
![\int_{0}^{\infty }e^{-st}7t^{3}dt=7\int_{0}^{\infty }e^{-st}t^{3}dt\\\\= [t^3\int e^{-st} ]_{0}^{\infty}-\int_{0}^{\infty }[(3t^2)\int e^{-st}dt]dt\\\\=0-\int_{0}^{\infty }\frac{3t^{2}}{-s}e^{-st}dt\\\\=\int_{0}^{\infty }\frac{3t^{2}}{s}e^{-st}dt\\\\](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7D7t%5E%7B3%7Ddt%3D7%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Dt%5E%7B3%7Ddt%5C%5C%5C%5C%3D%20%5Bt%5E3%5Cint%20e%5E%7B-st%7D%20%5D_%7B0%7D%5E%7B%5Cinfty%7D-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5B%283t%5E2%29%5Cint%20e%5E%7B-st%7Ddt%5Ddt%5C%5C%5C%5C%3D0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7B-s%7De%5E%7B-st%7Ddt%5C%5C%5C%5C%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7Bs%7De%5E%7B-st%7Ddt%5C%5C%5C%5C)
Again repeating the same procedure we get
![=0-\int_{0}^{\infty }\frac{3t^{2}}{-s}e^{-st}dt\\\\=\int_{0}^{\infty }\frac{3t^{2}}{s}e^{-st}dt\\\\\int_{0}^{\infty }\frac{3t^{2}}{s}e^{-st}dt= \frac{3}{s}[t^2\int e^{-st} ]_{0}^{\infty}-\int_{0}^{\infty }[(t^2)\int e^{-st}dt]dt\\\\=\frac{3}{s}[0-\int_{0}^{\infty }\frac{2t^{1}}{-s}e^{-st}dt]\\\\=\frac{3\times 2}{s^{2}}[\int_{0}^{\infty }te^{-st}dt]\\\\](https://tex.z-dn.net/?f=%3D0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7B-s%7De%5E%7B-st%7Ddt%5C%5C%5C%5C%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7Bs%7De%5E%7B-st%7Ddt%5C%5C%5C%5C%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7Bs%7De%5E%7B-st%7Ddt%3D%20%5Cfrac%7B3%7D%7Bs%7D%5Bt%5E2%5Cint%20e%5E%7B-st%7D%20%5D_%7B0%7D%5E%7B%5Cinfty%7D-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5B%28t%5E2%29%5Cint%20e%5E%7B-st%7Ddt%5Ddt%5C%5C%5C%5C%3D%5Cfrac%7B3%7D%7Bs%7D%5B0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B2t%5E%7B1%7D%7D%7B-s%7De%5E%7B-st%7Ddt%5D%5C%5C%5C%5C%3D%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E%7B2%7D%7D%5B%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Dte%5E%7B-st%7Ddt%5D%5C%5C%5C%5C)
Again repeating the same procedure we get
![\frac{3\times 2}{s^2}[\int_{0}^{\infty }te^{-st}dt]= \frac{3\times 2}{s^{2}}[t\int e^{-st} ]_{0}^{\infty}-\int_{0}^{\infty }[(t)\int e^{-st}dt]dt\\\\=\frac{3\times 2}{s^2}[0-\int_{0}^{\infty }\frac{1}{-s}e^{-st}dt]\\\\=\frac{3\times 2}{s^{3}}[\int_{0}^{\infty }e^{-st}dt]\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E2%7D%5B%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Dte%5E%7B-st%7Ddt%5D%3D%20%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E%7B2%7D%7D%5Bt%5Cint%20e%5E%7B-st%7D%20%5D_%7B0%7D%5E%7B%5Cinfty%7D-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5B%28t%29%5Cint%20e%5E%7B-st%7Ddt%5Ddt%5C%5C%5C%5C%3D%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E2%7D%5B0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B1%7D%7B-s%7De%5E%7B-st%7Ddt%5D%5C%5C%5C%5C%3D%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E%7B3%7D%7D%5B%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Ddt%5D%5C%5C%5C%5C)
Now solving this integral we have
![\int_{0}^{\infty }e^{-st}dt=\frac{1}{-s}[\frac{1}{e^\infty }-\frac{1}{1}]\\\\\int_{0}^{\infty }e^{-st}dt=\frac{1}{s}](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Ddt%3D%5Cfrac%7B1%7D%7B-s%7D%5B%5Cfrac%7B1%7D%7Be%5E%5Cinfty%20%7D-%5Cfrac%7B1%7D%7B1%7D%5D%5C%5C%5C%5C%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Ddt%3D%5Cfrac%7B1%7D%7Bs%7D)
Thus we have
![L[7t^{3}]=\frac{7\times 3\times 2}{s^4}](https://tex.z-dn.net/?f=L%5B7t%5E%7B3%7D%5D%3D%5Cfrac%7B7%5Ctimes%203%5Ctimes%202%7D%7Bs%5E4%7D)
where s is any complex parameter