Answer:
Coefficient of friction = 0.836
Explanation:
If v be the speed after one quarter of the circular path
v² = 2as = 2 x 1.85 x 2πr/4 ; v²/r = 1.85 x 3.14 = 5.8
tangential acceleration = 5.8 m/s²
radial acceleration = v² /r = 5.8
total acceleration = √2 x 5.8
m x√2 x 5.8 = m x g xμ
μ = √2 x 5.8 / 9.8 = 0.836
Answer:
here you go 4 m/s^2......tadaa
Answer:
Initial velocity =
b) Height it reaches = 44.145 m
Explanation:
Using the first equation of motion we have

here
v is the final velocity
u is the initial velocity
a is the acceleration of the object
t is time
When the ball reaches it's highest point it's velocity will become 0 as it will travel no further
Also the acceleration in our case is acceleration due to gravity (
) as the ball moves in it's influence alone with '-' indicating downward direction
Thus applying the values we get

b)
By 3rd equation of motion we have

here s is the distance covered
Applying the value of u that we calculated we get

<h3>
Answer:</h3>
3.4 m/s²
<h3>
Explanation:</h3>
We are given;
- Mass of the box as 25 kg
- Force is 85 N
We are required to determine the acceleration;
- According to second newton's law of motion force is given by the product of mass and acceleration.
- That is;
Force = ma
Rearranging the formula;
a = F ÷ m
Therefore;
acceleration = 85 N ÷ 25 kg
= 3.4 m/s²
Thus, the acceleration of the box will be 3.4 m/s²
Answer:
b) Cells will pass through the G1/S checkpoint even if conditions are not ideal for cell division.
Explanation:
In the given problem, if there exists a gain-of-function mutation for the given cell, there would not be the formation of cyclin E when there is the possibility of cells movement via the checkpoint of the G1/S, even when there are non-deal conditions for the division of cell. Thus, the correct option in the lists of options is the option b.