Answer:
P = 10 kPa
Explanation:
Given that,
The mass of a small table, m = 4 kg
The area of each leg = 0.001 m²
We need to find the pressure exerted by the table on the floor. Pressure is equal to the force per unit area. So

So, the required pressure is 10 kPa.
Answer:
it comprises of the DNA/RNA bipolymer molecules
They were formed in the nuclear<span> fusion reaction inside older </span><span>stars.
As a star burns, fusion reactions inside its core create heavier elements. Those materials are released when the star dies of old age in an explosion.</span>
Answer:
See step by step sexplanation
Explanation:
1.-Sabemos que la relación:
P₁ * V₁ = P₂ * V₂
Para una temperatura constante debe mantenerse entonces si el globo se comprime hasta llevarlo a 1/3 de su valor inicial, entonces necesariamente para cumplir con la relación mencionada, la presión aumenta tres veces su valor original
2.-La definición de presión es fuerza por unidad de superficie, entonces la fuerza es determinada por la altura de la columna de liquido en el recipiente y no por la cantidad total de liquido, de acuerdo a esto habrá más presión en la base del florero, ya que la columna de agua tiene más altura.
3.-No se puede estar de acuerdo con el criterio del plomero. En su solución no plantea el aumento de la altura del tanque, para el logro del aumento de la presión que es realmente lo que hay que hacer
Answer:
Option A
Explanation:
This can be explained based on the conservation of energy.
The total mechanical energy of the system remain constant in the absence of any external force. Also, the total mechanical energy of the system is the sum of the potential energy and the kinetic energy associated with the system.
In case of two stones thrown from a cliff one vertically downwards the other vertically upwards, the overall gravitational potential energy remain same for the two stones as the displacement of the stones is same.
Therefore the kinetic energy and hence the speed of the two stones should also be same in order for the mechanical energy to remain conserved.