Answer:
Victor runs 0.6 of a lap in 1 minute
Step-by-step explanation:
From the question;
3 laps = 5 minutes
x laps = 1 minute
3 * 1 = 5 * x
3 = 5x
x = 3/5
x = 0.6
Victor runs 0.6 of a lap in a minute
4x (2x - 6)
8x - 24x
= -16x
Answer:
<h2>37/9</h2>
Step-by-step explanation:
<h3>we have</h3>
<h3>3.77777... :- is a repeating decimal</h3>
<h3>Let</h3>
<h3>x = 3.7...</h3>
<h3>so</h3>
<h3>10x =37.7...</h3>
<h3>10x - x = 37.7... -3.7...</h3>
<h3>9x=34</h3>
<h3>x= 34/9</h3>
<h3>convert to mixed number</h3>
<h3>34/9=(27/9)+(7/9)=3+(7/9) =37/9</h3>
<h3> I hope this may help you.</h3>
5.46/0.25= 21.84 hope it helps
Answer: the function g(x) has the smallest minimum y-value.
Explanation:
1) The function f(x) = 3x² + 12x + 16 is a parabola.
The vertex of the parabola is the minimum or maximum on the parabola.
If the parabola open down then the vertex is a maximum, and if the parabola open upward the vertex is a minimum.
The sign of the coefficient of the quadratic term tells whether the parabola opens upward or downward.
When such coefficient is positive, the parabola opens upward (so it has a minimum); when the coefficient is negative the parabola opens downward (so it has a maximum).
Here the coefficient is positive (3), which tells that the vertex of the parabola is a miimum.
Then, finding the minimum value of the function is done by finding the vertex.
I will change the form of the function to the vertex form by completing squares:
Given: 3x² + 12x + 16
Group: (3x² + 12x) + 16
Common factor: 3 [x² + 4x ] + 16
Complete squares: 3[ ( x² + 4x + 4) - 4] + 16
Factor the trinomial: 3 [(x + 2)² - 4] + 16
Distributive property: 3 (x + 2)² - 12 + 16
Combine like terms: 3 (x + 2)² + 4
That is the vertex form: A(x - h)² + k, whch means that the vertex is (h,k) = (-2, 4).
Then the minimum value is 4 (when x = - 2).
2) The othe function is <span>g(x)= 2 *sin(x-pi)
</span>
The sine function goes from -1 to + 1, so the minimum value of sin(x - pi) is - 1.
When you multiply by 2, you just increased the amplitude of the function and obtain the new minimum value is 2 (-1) = - 2
Comparing the two minima, you have 4 vs - 2, and so the function g(x) has the smallest minimum y-value.