1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tomtit [17]
3 years ago
8

Kat owns 15% more figurines than she did last year. She purchased F figurines this year. Which of the following expressions coul

d represent the number of Figurines Kat owned last year?
Mathematics
2 answers:
nataly862011 [7]3 years ago
8 0

Well please re post the complete question as i can not see the expression over here. How ever, A wild guess is 15% of x + x should be equal to F. Where x is the figurines owned the previous year.

Stella [2.4K]3 years ago
4 0

Answer:  F / 0.15 = 100F / 15 = 20F / 3 ≈ 6.67F.


Explanation:


1) The three expresssions,  F / 0.15;  15 F / 100; 3F / 20; are equivalent.


2) The number of figurines Kat owned last year may be expressed in terms of the number the of figurines purchased, F, this year, and the 15%, following this procedure:


  • Call n the amount of figurines owned last year.
  • F is the number of figurines purchased: F  = 15%n = 0,15n
  • Hence, you just need to clear F from the expression F = 0.15n
  • Divide both sides by 0.15:

        F / 0.15 = n or n = F / 0.15 (reflexive property)

  • To prove the equialavence of the other expresssions you just have to use the properties of multiplication or division:

       (F / 0.15) × (100 / 100) = 100F / 15

        100F / 15 = (100/5)F / (15/5) = 20F / 3 ≈ 6.67F

 



You might be interested in
(2x3z2)3 <br> ------------------ <br> x3y4z2 * (x-4z3)
Komok [63]
The rules of exponents tell you to add exponents in the numerator and subtract those in the denominator. A power of a power causes the exponent to be multiplied.

\dfrac{(2x^{3}z^{2})^{3}}{x^{3}y^{4}z^2x^{-4}z^{3}}=2^{3}x^{(3\cdot3-3-(-4))}y^{-4}z^{(2\cdot3-2-3)}\\\\=\dfrac{8x^{10}z}{y^{4}}
8 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
2 years ago
Question 8/Multiple Choice Worth 1 points)
Hunter-Best [27]

Answer:

k = 3

Step-by-step explanation:

Given

f(x) = 0.5x

g(x) = 0.5x - k

Required

Find k

<em>The question illustrates changing of positions of lines along the x and/or y axis;</em>

<em>But in this case; if graph f(x) is shifted down, then it represents a negative shift of points in the y axis.</em>

Given that f(x) = 0.5x

and f(x) is shifted down by 3 units to give g(x); then:

f(x) - 3 = g(x)

Substitute 0.5x for f(x)

0.5x - 3 = g(x)

Recall that g(x) = 0.5x - k ---------- (given)

0.5x - 3 = 0.5x - k

Subtract 0.5x from both sides

-0.5x + 0.5x - 3 = -0.5x + 0.5x - k

-3 = -k

Multiply both sides by -1

-3 * -1 = -k * -1

3 = k

k = 3

<em>Hence, the value of k is 3</em>

8 0
2 years ago
Felix can have 1 fish for every 4,000 mm of water in his fish tank. his fish tank holds 180 l. how many fish can he have in his
Alenkasestr [34]
45 fish

1 L = 1,000 mL
180(1,000) = 180,000
180 L = 180,000 mL
180,000/4,000 = 45

3 0
3 years ago
alex won first place in the shot-put with a heave of 35 feet 4 inches. Griffin won second place with a heave of 32 feet 9 inches
Alex Ar [27]
Alex defeated Griffin by 2 feet and 5 inches. 2.5
How to solve: 35.4 - 32.9 = 2.5 :))
6 0
2 years ago
Other questions:
  • 7x + 2 &gt; 30 <br><br> Help please
    14·2 answers
  • Hank estimated the width of the door to his classroom in feet. What is a reasonable estimate?
    10·1 answer
  • Lynn bought a bag of grapefruit, 1 5/8 pounds of apples, and 2 3/16 pounds of bananas. The total weight of her purchase was 7 1/
    12·2 answers
  • The sum of three numbers is -3. The last number is three times the first. The last number is 11 smaller than the second number.
    14·2 answers
  • PLEASE HELP WITH MY TEST
    7·1 answer
  • Which graph represents 2 (cosine (StartFraction 2 pi Over 3 EndFraction) + I sine (StartFraction 2 pi Over 3 EndFraction) ) ?
    14·1 answer
  • Help! A: 200 - 4n<br> B: 200 + 4n<br> C: (200+4) ✖️ n<br> D: 200n + 4
    5·1 answer
  • At one point on the trip the miles are recorded as 15,121 when the gas tank is 75% full. Use a ratio equation to determine the m
    12·1 answer
  • Suppose if, instead of depositing the $600 all at once, you deposit nothing at the beginning and you divide up the $600 into 12
    8·1 answer
  • Nadia needs one cup of ice cream for every student in her class for their year-end party. The ice cream is only sold in pints. I
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!