Answer:
A
Explanation:
smh man do better this is too easy
Idhdhdhdhdjdfjfjnfnfnffnfnfnfnfnfjfnfjfoddidjdifjdjffucjfjffjfuf
Answer:
Distance = 16.9 m
Explanation:
We are given;
Power; P = 70 W
Intensity; I = 0.0195 W/m²
Now, for a spherical sound wave, the intensity in the radial direction is expressed as a function of distance r from the center of the sphere and is given by the expression;
I = Power/Unit area = P/(4πr²)
where;
P is the sound power
r is the distance.
Thus;
Making r the subject, we have;
r² = P/4πI
r = √(P/4πI)
r = √(70/(4π*0.0195))
r = √285.6627
r = 16.9 m
Semi-conductors are occasionally conductors based on their needs. Hope this helps!!!
Answer:
The dimension is 
Explanation:
From the question we are told that

Here ![[J] = \frac{1}{L^2 T}](https://tex.z-dn.net/?f=%5BJ%5D%20%3D%20%5Cfrac%7B1%7D%7BL%5E2%20T%7D)
![[n] =\frac{1}{L^3}](https://tex.z-dn.net/?f=%5Bn%5D%20%3D%5Cfrac%7B1%7D%7BL%5E3%7D)
![[x] = L](https://tex.z-dn.net/?f=%5Bx%5D%20%3D%20L)
So
![\frac{1}{L^2 T} = -D \frac{d(\frac{1}{L^3})}{d[L]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7BL%5E2%20T%7D%20%3D%20%20-D%20%5Cfrac%7Bd%28%5Cfrac%7B1%7D%7BL%5E3%7D%29%7D%7Bd%5BL%5D%7D)
Given that the dimension represent the unites of n and x then the differential will not effect on them
So
=> 
=> 