Answer:
110 mL
Explanation:
Ideal gas law:
PV = nRT
Assuming the container isn't rigid, and the pressure is constant, then:
V/T = V/T
Plug in values (remember to use absolute temperature).
V / 293 K = 150 mL / 393 K
V = 110 ml
Hope u understood!
pls mark me brainliest
#staysafestayhome
<span>As we Know
ω=v/r
I2 = m*R² = 1.5*0.35² = 0.18375 kgâ™m²
I = Is + I2 = 4.28375 kgâ™m²
w = L/I = (v*R*m)/I = (2.8*0.35*1.5)/4.28375 = 0.343 rad/sec
So the answer is 0.343 rd/sec</span>
The geographical region where I would expect the warmest weather is: C. in the southeast.
<h3>What is a weather map?</h3>
A weather map can be defined as a type of chart that is typically used to provide information about the average atmospheric condition of a particular geographical region over a specific period of time.
Based on the weather map shown in the image attached below, we can infer and logically deduce that the geographical region where the warmest weather is expected is in the southeast due to its very high atmospheric pressure.
Read more on weather here: brainly.com/question/24730207
#SPJ1
<h2>Question:</h2>
In this circuit the resistance R1 is 3Ω, R2 is 7Ω, and R3 is 7Ω. If this combination of resistors were to be replaced by a single resistor with an equivalent resistance, what should that resistance be?
Answer:
9.1Ω
Explanation:
The circuit diagram has been attached to this response.
(i) From the diagram, resistors R1 and R2 are connected in parallel to each other. The reciprocal of their equivalent resistance, say Rₓ, is the sum of the reciprocals of the resistances of each of them. i.e

=>
------------(i)
From the question;
R1 = 3Ω,
R2 = 7Ω
Substitute these values into equation (i) as follows;


Ω
(ii) Now, since we have found the equivalent resistance (Rₓ) of R1 and R2, this resistance (Rₓ) is in series with the third resistor. i.e Rₓ and R3 are connected in series. This is shown in the second image attached to this response.
Because these resistors are connected in series, they can be replaced by a single resistor with an equivalent resistance R. Where R is the sum of the resistances of the two resistors: Rₓ and R3. i.e
R = Rₓ + R3
Rₓ = 2.1Ω
R3 = 7Ω
=> R = 2.1Ω + 7Ω = 9.1Ω
Therefore, the combination of the resistors R1, R2 and R3 can be replaced with a single resistor with an equivalent resistance of 9.1Ω