Answer:
XCH₄ = 0.461
XCO₂ = 0.539
Explanation:
Step 1: Given data
- Partial pressure of methane (pCH₄): 431 mmHg
- Partial pressure of carbon dioxide (pCO₂): 504 mmHg
Step 2: Calculate the total pressure in the container
We will sum both partial pressures.
P = pCH₄ + pCO₂
P = 431 mmHg + 504 mmHg = 935 mmHg
Step 3: Calculate the mole fraction of each gas
We will use the following expression.
Xi = pi / P
XCH₄ = pCH₄/P = 431 mmHg/935 mmHg = 0.461
XCO₂ = pCO₂/P = 504 mmHg/935 mmHg = 0.539
Gases can be compressed easily because there is a large amount of space between the individual molecules, which are very active and move around at high speed. When gases are compressed, the particles are forced much closer together, allowing a huge amount of particles to fit a small space.
Answer:The kinetic-molecular theory of gases assumes that ideal gas molecules (1) are constantly moving; (2) have negligible volume; (3) have negligible intermolecular forces; (4) undergo perfectly elastic collisions; and (5) have an average kinetic energy proportional to the ideal gas's absolute temperature.
Explanation:
B. it means the compound is dissolved in water
Put a 3 on the Br2 and a 2 in front of the IBr3. You will then have 6Br on both sides, 2 I's on both sides.