The answer is d) pOH = - lg[OH-]. Like pH expression: pH = -lg[H+] or pH = - lg[H3O+]. The pOH is a definition similar to the pH. So the expression is also similar. We only need to change H+ to OH-.
Answer:
95.2 - 40.8 = 54.4 g of oxygen
number of moles = mass (g)/ Mr
no. of moles of carbon = 40.8/12 = 3.4
no. of moles of oxygen = 3.4
divide both by smallest value which is 3.4 and you’ll get 1 mole of carbon and 1 mole of oxygen therefore the empirical formula is CO
Explanation:
hope this helps :)
C4h10+6.5o2=4co2+5h2o
moles of butane=1.92/58=0.0331 moles
moles of water=0.1655 moles\
as the butane and water has 1 is to 5 molar ratio
0.1655=mass/18
mass=2.98 g
mass of water produced = 2.98 g
Explanation:
It is known that
value of acetic acid is 4.74. And, relation between pH and
is as follows.
pH = pK_{a} + log ![\frac{[CH_{3}COOH]}{[CH_{3}COONa]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOOH%5D%7D%7B%5BCH_%7B3%7DCOONa%5D%7D)
= 4.74 + log 
So, number of moles of NaOH = Volume × Molarity
= 71.0 ml × 0.760 M
= 0.05396 mol
Also, moles of
= moles of 
= Molarity × Volume
= 1.00 M × 1.00 L
= 1.00 mol
Hence, addition of sodium acetate in NaOH will lead to the formation of acetic acid as follows.

Initial : 1.00 mol 1.00 mol
NaoH addition: 0.05396 mol
Equilibrium : (1 - 0.05396 mol) 0 (1.00 + 0.05396 mol)
= 0.94604 mol = 1.05396 mol
As, pH = pK_{a} + log ![\frac{[CH_{3}COONa]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOONa%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)
= 4.74 + log 
= 4.69
Therefore, change in pH will be calculated as follows.
pH = 4.74 - 4.69
= 0.05
Thus, we can conclude that change in pH of the given solution is 0.05.