Explanation:
According to the given data, we will calculate the following.
Half life of lipase
= 8 min x 60 s/min
= 480 s
Rate constant for first order reaction is as follows.
=
Initial fat concentration
= 45
= 45 mmol/L
Rate of hydrolysis
= 0.07 mmol/L/s
Conversion X = 0.80
Final concentration (S) =
= 45 (1 - 0.80)
= 9
or, = 9 mmol/L
It is given that
= 5mmol/L
Therefore, time taken will be calculated as follows.
t = ![-\frac{1}{K_{d}}ln[1 - \frac{K_{d}}{V}{K_{M} ln (\frac{S_{o}}{S}) + (S_{o} - S)]](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7BK_%7Bd%7D%7Dln%5B1%20-%20%5Cfrac%7BK_%7Bd%7D%7D%7BV%7D%7BK_%7BM%7D%20ln%20%28%5Cfrac%7BS_%7Bo%7D%7D%7BS%7D%29%20%2B%20%28S_%7Bo%7D%20-%20S%29%5D)
Now, putting the given values into the above formula as follows.
t =
= ![-\frac{1}{1.44 \times 10^{-3}s^{-1}}ln[1 - \frac{1.44 \times 10^{-3}s^{-1}}{0.07 mmol/L/s }{K_{M} ln (\frac{45 mmol/L }{9 mmol/L }) + (45 mmol/L - 9 mmol/L )]](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B1.44%20%5Ctimes%2010%5E%7B-3%7Ds%5E%7B-1%7D%7Dln%5B1%20-%20%5Cfrac%7B1.44%20%5Ctimes%2010%5E%7B-3%7Ds%5E%7B-1%7D%7D%7B0.07%20mmol%2FL%2Fs%0A%7D%7BK_%7BM%7D%20ln%20%28%5Cfrac%7B45%20mmol%2FL%0A%7D%7B9%20mmol%2FL%0A%7D%29%20%2B%20%2845%20mmol%2FL%20-%209%20mmol%2FL%0A%29%5D)
= 
= 27.38 min
Therefore, we can conclude that time taken by the enzyme to hydrolyse 80% of the fat present is 27.38 min.
Answer:
a) 
b) entropy of the sistem equal to a), entropy of the universe grater than a).
Explanation:
a) The change of entropy for a reversible process:


The energy balance:
![\delta U=[tex]\delta Q- \delta W](https://tex.z-dn.net/?f=%5Cdelta%20U%3D%5Btex%5D%5Cdelta%20Q-%20%5Cdelta%20W)
If the process is isothermical the U doesn't change:
![0=[tex]\delta Q- \delta W](https://tex.z-dn.net/?f=0%3D%5Btex%5D%5Cdelta%20Q-%20%5Cdelta%20W)


The work:

If it is an ideal gas:


Solving:

Replacing:


Given that it's a compression: V2<V1 and ln(V2/V1)<0. So:

b) The entropy change of the sistem will be equal to the calculated in a), but the change of entropy of the universe will be 0 in a) (reversible process) and in b) has to be positive given that it is an irreversible process.
The relation between the volume and the temperature of the gas is given by Charles's law. The final temperature of the gas at 0.75 liters is -193.8°C.
<h3>What is Charles's law?</h3>
Charles's law was derived from the ideal gas equation and is used to state the relationship between the temperature and the volume of the gas. With a decrease in volume the temperature decreases.
If the pressure is kept constant then with an increase in temperature the volume of the gas expands. The law is given as,
V₁ ÷ T₁ = V₂ ÷ T₂
Given,
Initial volume (V₁) = 2.80 L
Initial temperature (T₁) = 23 °C = 296.15 K
Final volume (V₂) = 0.75 L
Final temperature = T₂
Substituting the values above as:
T₂ = (V₂ × T₁) ÷ V₁
= 0.75 × 296.15 ÷ 2.80
= 79.325 K
Kelvin is converted as, 79.325K − 273.15 = -193.8°C
Therefore, the final temperature is -193.8°C.
Learn more about Charle's law, here:
brainly.com/question/16927784
#SPJ1
Phosphoryl chloride :
POCl3
<span>
hope this helps!.
</span>
Answer:
CaCO3 -> CaO + CO2
Explanation:
Woahhhh, did you balance it yourself just then?