Let's make a system of equations.
1 large bottle = l
1 regular bottle = r
l + r = 113
221 = 2.5l + r
Isolate r in the first equation and substitute it into the second equation:
l + r = 113
r = 113 - l
---
221 = 2.5l + 113 - l
221 = 1.5l + 113
108 = 1.5l
72 = l
Now, substitute that back into the first equation:
l + r = 113
72 + r = 113
r = 41
Finally, check your work by substituting back into both equations:
72 + 41 = 113 --> 113 = 113 <-- True
221 = 2.5(72) + 41 --> 221 = 180 + 41 <--True
Answer:
Franklin sold 72 large bottle of water and 41 regular-sized bottles of water.
Since 25% is 1/4, then 180 times 4 is 720.
720 is your answer.
Answer:
Step-by-step explanation:
Let x represent the seating capacity
Number of seats = 40+x
Profit per seat = 10 - 0.20x
For maximum number of seats
P(x) = ( 40+x ) ( 10-0.20x )
P(x) = 400+10x-8x-0.2x^2
P(x) = 400+2x- 0.2x^2
Differentiating with respect to ( x )
= 2 - 0.4x
0.4x = 2
x = 2/0.4
x = 5
The seating capacity will be 40+5 = 45
For the maximum profits
40X10+ 9.9 + 9.8 + 9.7 + 9.6 + 9.5 + 9.4 + 9.3 + 9.2 + 9.1 + ... 1.0, 0.9, 0.8, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1
= 400 + an arithmetic series (first term = 0.1, common difference = 0.1, number of terms = 8+ 40 = 48 )
= 400 + (48/2)(2X0.1 + (48-1)X0.1)
= 400 + 24(0.2 + 4.7)
= 400 + 24(4.9)
= 400 + 117.6
= 517.6
= 517.6dollars
Complete question is;
Multiple-choice questions each have 5 possible answers, one of which is correct. Assume that you guess the answers to 5 such questions.
Use the multiplication rule to find the probability that the first four guesses are wrong and the fifth is correct. That is, find P(WWWWC), where C denotes a correct answer and W denotes a wrong answer.
P(WWWWC) =
Answer:
P(WWWWC) = 0.0819
Step-by-step explanation:
We are told that each question has 5 possible answers and only 1 is correct. Thus, the probability of getting the right answer in any question is =
(number of correct choices)/(total number of choices) = 1/5
Meanwhile,since only 1 of the possible answers is correct, then there will be 4 incorrect answers. Thus, the probability of choosing the wrong answer would be;
(number of incorrect choices)/(total number of choices) = 4/5
Now, we want to find the probability of getting the 1st 4 guesses wrong and the 5th one correct. To do this we will simply multiply the probabilities of each individual event by each other.
Thus;
P(WWWWC) = (4/5) × (4/5) × (4/5) × (4/5) × (1/5) = 256/3125 ≈ 0.0819
P(WWWWC) = 0.0819