Answer:

Step-by-step explanation:
27 is a perfect cube for
and 729 is a perfect cube for 
now you can pull out the numbers from under the root, for t (divide the exponent by 3)

now simply to 
Answer:
There were 26 students in his class and the teacher had 83 ml of the solution.
Step-by-step explanation:
Mr. Kohl has a "x" amount of solution, if he divides it by the number of students "n" he'll give each student 3 milliliters and have a left over of 5 milliliters. If the amount of solution Mr. Kohl had was "x + 21" then he'd be able to give each student 4 milliliters of the solution. From these informations we have:
x = 3*n + 5
(x + 21)/n = 4
x + 21 = 4*n
x = 4*n - 21
Now that we have two equations and two variables we can solve the system of equations, as seen bellow:
3*n + 5 = 4*n - 21
3*n - 4*n = -21 - 5
-n = -26
n = 26
x = 4*26 - 21 = 83 ml
There were 26 students in his class and the teacher had 83 ml of the solution.
The volume prism refers to the number of cubic units that will exactly fill the figure. The volume of a rectangular prism can be found or calculate by using the formula
V=Bh, where
B represents to the area of the base or in other words the length and width of the rectangle.
In this exercise is given that the measurements of a prism are 5/2ft, 3/2ft, and 7/2ft; and it is asked to find its volume. In order to find the volume of the prism, you should substitute the given values into the previous mention formula.
V=Bh
V=(5/2 ft)(7/2 ft)(3/2 ft)
V=(35/4 ft²)(3/2 ft)
V=105/8ft³ or
ft³The volume of the rectangular prism is
ft³.
No, it does not have a straight line. (A)
Answer:
Looking at the first question, it's asking what best describes the probability of tossing a number less than 6 on a number cube that has 6 numbers. Impossible means that it will never land on it, for example asking what the probability of landing on 7 is. Unlikely is something that doesn't happen often. The best option that fits our scenario is option C, likely.
Looking at the second question, it's asking what the probability that the teacher chooses a girl in his class. There are 15 girls and a total of 27 students in the class so we take the probability by doing 15/27. We can narrow both the numerator and the denominator using 3 which gives us 5/9. Therefore, the best option that fits our scenario is option C, 5/9.
Finally, looking at the last question, it's asking what the theoretical probability that the coin will land on heads on the next toss. Theoretical probability doesn't consider how much times Murray tossed the coin, the only thing it cares about is what the actual probability of tossing a coin is. Therefore that makes it a 50% chance of landing on a heads and a 50% chance of landing on a tails. The best option that first our scenario is option B, 1/2.
<u><em>Hope this helps! Let me know if you have any questions</em></u>